Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports
{0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3. DATES COVERED (From - To)
30-06-2006 Final Dec 2001 - Mar 2006
4. TITLE AND SUBTITLE ba. CONTRACT NUMBER

Knowledge, Models, and Tools in Support of Advanced Distance Learning

Final Report: The iRides Performance Simulation / Instruction Delivery and 5b. GRANT NUMEER
Authoring Systems N00014-02-1-0179

5¢. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Allen Munro, Quentin A. Pizzini, Mark C. Johnson, Josh Walker, and David
Surmon Ge. TASK NUMBER

University of Southern California Center for Cognitive Technology

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

UCLA CSE/CRESST REPORT NUMBER
300 Charles E. Young Dr. North
300 GSE&IS/Mailbox 951522
Los Angeles, CA 90095-1522

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
ONR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY S-ES{%%EEUTHQN STATE?;EE?\AT A
Approved for Public Release
Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes research conducted by the University of Southern California Behavioral Technology Laboratory in developing
iRides, an advanced system for delivering authored interactive graphical simulations and instructional vignettes. The system provides
the ability to deliver simulation-based instruction as Java applications, Java applets, and Java Web Start applications. The latter two
options make it possible for these authored interactive graphical simulations and training to be delivered over the Web or any similar
network to support advanced distributed learning. A new authoring tool, iRides Author, supports development of any simulations and
instruction that iRides can deliver. The applet version of iRides can be delivered as a SCORM-compliant shareable content object.
Another tool for authoring iRides simulations and training, Rivets, is a fast C++ program that has been compiled for three Unix-type
operating systems: Linux, Silicon Graphics IRIX, and Mac OS 10.3 or later with X11. The flexible and open architecture of iRides
makes it possible to employ this tool in collaboration with other advanced training system components, such as intelligent tutors.

15. SUBJECT TERMS
iRides, simulation authoring, advanced distributed learning

16. SECURITY CLASSIFICATION OF: 7. LIMITATION OF _[18. NUMBER |19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT [c. THIS PAGE ABSTRACT ,‘,’,':GES

. . . 19b. TELEPHONE NUMBER (/nclud de
Unclassified | Unclassified | Unclassified finclude area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

Knowledge, Models, and Tools in Support
of Advanced Distance Learning

Final Report

UCLA Subaward No. 0070-G-CH640
Supported by Office of Naval Research Grant N00014-02-1-0179

Allen Munro
Quentin A. Pizzini
Mark C. Johnson
Josh Walker
David Surmon

Behavioral Technology Laboratories
University of Southern California
250 No. Harbor Drive, Suite 309
Redondo Beach, CA 90277

(310) 379-0844

munro@usc.edu
http://btl.usc.edu/

20060703029

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

Final Report
Knowledge, Models, and Tools in Support of Advanced Distance Learning

UCLA Award 0070-G-CH640
Supported by Office of Naval Research Grant N00014-02-1-0179

1.0 A technology for delivering simulation-based distance learning

1.1 Instruction in the Context of Simulations

Conventional distance learning is typically based on a page model of instruction. A
student reads material on a page and/or views some graphics or listens to audio associated
with that page, and then takes some action that leads to the presentation of another page.
In some cases, a book-like model is used; students 'turn the pages' by pressing Next and
Back buttons. In other learning modules, students may answer questions about the
content that has just been presented to them. Depending on their responses, they may
progress to different pages: one if they answer correctly, different ones that provide
remedial instruction if they answer incorrectly.

This conventional approach may be adequate for many topics. This is unsurprising, since
people have learned effectively from page-based books and other printed materials for
hundreds of years. The gate-keeping function of the mini-assessments that permit the
students to move through the learning materials make it possible for some students to
move more quickly through such a computer-based set of pages than they might through
a textbook. Certain other students, who might not learn effectively from a textbook with
too condensed a presentation approach, benefit from the remedial materials that are built
into certain well-designed page-based training systems.

Many subject matters can be effectively taught with well-designed and well-executed
page-based training systems. These include subjects like history, literary theory, and
perhaps the structure of organizations, devices, and other systems, Certain other subject
matters have also often been taught using page-based approaches, but are, in fact, less
well-suited to those methods. These include topics such as complex procedures, problem-
solving strategies in specific contexts, and the behavior of organizations, devices, and
other systems. For many of these types of topics, an action-centered learning context is
much more effective than a page-based approach. For distance learning, the only practical
method of delivering action-centered learning contexts is to use interactive graphical
simulations.

This is not to say that delivering a topic-relevant interactive graphical simulation is a
sufficient means of conveying knowledge about the topic. Interacting with a simulation is
not enough to ensure that learning has taken place. Students typically require
instructional control, guidance, and assessment. Without such interventions, only the

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

best-prepared and most highly motivated students are likely to learn much simply by
interacting with graphical simulations.

1.2, Learning complex job skills

Adult learning is often motivated by the need to learn how to perform complex tasks that
are important to the performance of one's job. In some cases, the procedures that must be
learned to perform these tasks can be defined as a sequence of well-specified actions. In
other cases, the procedure can be thought of instead as a network of conditional
branchings that associate collections of actions that could be performed to accomplish the
task goal in a variety of contexts. And in some cases, tasks are complex enough that they
cannot be taught in terms of predefined observations and actions, but must instead be
represented as a set of strategies, tactics, and heuristics that are sufficiently abstract that
they can be applied to new circumstances that cannot be anticipated by the developers of
the distance learning materials.

Whatever the complexity of the procedural or applied problem solving subject matter,
practice at the task under a variety of conditions will improve the chances that the learner
will apply what has been learned to actual tasks.! Most procedures require learning about
sequences of actions, learning about the conditions under which actions could be taken,

-or learning how to-address complex problems in the context of a task environment. These

cognitive components of procedural learning can be taught in a practice environment that
provides an opportunity for interactive practice in the context of a functionally realistic
task environment, such as a graphical simulation. When a computer delivers the training,
it is possible for it to tirelessly observe and offer pedagogically relevant responses to the
actions that students take in that practice environment. Task practice can be interactively
assessed in real time, rather than being postponed for 'after-action reviews', as is common
in simulation-based training in the U.S. military forces.

A body of work on the topic of machine-based teaching and tutoring in the context of
interactive simulations has produced two sets of specifications that may have wide
application to the field of teaching cognitively loaded tasks using computers. One of
these is a set of techniques that have been found effective for organizing and delivering
automated instruction about procedures and complex tasks. The other is a set of
specifications that action-centered environments, whether they be simulations or
embedded training systems, can adhere to in order to support machine observation and
remediation of learner actions during task practice. These results were applied to distance
learning in the course of this project.

Procedural instruction has much in common with other types of instruction, such as the
need for frequent assessment and for customized pedagogy. In addition, however,

! Certain types of procedural skills cannot be taught economically using distance learning technology at
this time. In particular, where specialized motor skills must be learned (applying a precise twisting force
during an assembly process, for example), distance learning cannot address the entire learning
requirement. Cognitive components of procedural knowledge can be taught with distance learning,
however.

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

procedural instruction has a number of characteristics that are not found in other types of
instruction. Procedural instruction can include specialized modes of instruction and
specialized types of assessment.

Procedural instruction is often carried out in a master-apprentice context. A tutor, who
knows very well how the procedure should be performed and (ordinarily) why each
action should be taken, works to convey that knowledge to a student or trainee. In many
cases, procedural training is carried out in a work environment, which makes it possible
to demonstrate actions and procedures, to point out relevant observations that should be
made, and to assess student knowledge by observing the student carry out sequences of
actions. As is described below, it is also possible to develop and deliver distance-learning
procedural instruction that performs the same kinds of functions.

1.2.1. Special Instruction Modes. Consider the following possible major modes of
instruction in procedural training:

* Demonstration

* Monitored practice

* Unmonitored practice
These modes are in addition to conventional instructional modes such as presenting
explanations (in text, graphics, or animations) or assessing students' answers to questions.

1.2.2. Special Types of Assessment. A type of assessment that is found in procedure
training is a procedural performance assessment. In a procedural performance
assessment, a student is directed to carry out a procedure in one or in a variety of
contexts. The student's approach to the procedure is observed and assessed. Detailed
assessments can be used to guide instruction. Summative assessments can be used to
determine whether a student can be credentialed as a competent performer of the targeted
procedure.

A procedural tutor can carry out a set of micro-assessments during training. Micro-
assessments are simple interaction events that can be assessed to provide estimates of
knowledge about particular facts and skills that are required for competence in the
procedure as a whole. Examples of micro-assessments can include
* Observing actions (in a procedural environment; here we are discussing actions that may
be part of the procedure to be learned, not actions such as answering a multiple choice
question)
¢ Observing effects (in the procedural environment)
¢ Observing the attainment of states of interest in the procedural environment

Just as a human tutor must observe actions, pose questions, explain relationships, carry
out actions and sequences of actions, set up practice contexts, and pose challenges to be
met by a learner, so, too must a web-delivered training system.

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

1.3. Teaching procedural knowledge in the context of a simulation

During the 1980s there was an enthusiasm for so-called microworlds as learning
environments (Papert, 1980; Forbus, 1984; Hollan, Hutchins, and Weitzman, 1984). It
was widely expected that providing students rule-governed interactive graphical
environments would afford the students opportunities to acquire deep understandings of
these rule-based systems, which they could interact with, conducting 'experiments' and
observing the outcomes. Microworlds in topics such as microeconomics (Shute and
Glazer, 1990), gravity and Newtonian motion, and electronic circuits were developed. In
the long run, the microworld approach was not much applied to real world procedural
training. There appear to be two primary reasons for this. The first is that developing
high-quality microworlds for learning proved to be a rather expensive programming
problem. Each microworld was typically created from scratch in a fairly low-level
development environment (typically, using a programming language). There were
substantial expenses re-implementing core simulation features and student interaction
interfaces anew for each such project.

The second reason for the lack of ubiquitous success with microworlds is that it turns out
that not every student has the intellectual and emotional makeup that drives them to
experiment boldly, relentlessly, and imaginatively in the microworld. It is probably not a
coincidence that one of the few surviving centers of educational microworld research is at
MIT, where there is no shortage of students who exhibit such characteristics. To expect
every electronics technician to derive or intuit important electronic principles as a result
of experimenting with simulated electronic environments seems naive, at best. In fact,
subsequent work has found it necessary to supply pedagogical interactions with
microworld simulations (Rieber, 1992; Self, 1995).

Similarly, to expect every schoolchild to derive the basic principles of velocity and
acceleration as a result of using (real or simulated) ramps and rolling balls of different
masses but equal rolling resistance is simply unrealistic. After all, people had access to
ramps and balls to experiment with for thousands of years before Galileo worked out the
basic principles of acceleration using such an apparatus. And he did not do so in the
course of a single two-hour 'discovery learning' session. Not every student is a Galileo.
Most people need guidance if they are to learn about the behavior of complex systems
and about how to carry out procedures in those contexts. For most students, exposure to a
microworld by itself will never bring about such learning. Students need to receive
instruction in the procedural context.

What does instruction typically consist of in an interactive procedural context? There are
many possible sequences of instruction, and many types of 'instructional primitives' that
can be used in such sequences. Some of these instructional primitives will be of types that
are commonly used in non-procedural instruction. For example, a teacher (or an artificial
tutor) could begin by posing a simple yes-or-no question, such as "Have you ever seen an
electronic heart defibrillator, such as this one?" In this paper, the topic is the types of
instructional interactions that take place in procedural learning contexts, but that are not
used in many other contexts, such as conventional page-based CBT/CBI/CBL.

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

1.4. The architecture of complex procedural learning environments

Whether instruction about procedures involves a human tutor and real world systems and
devices, or an artificial tutorial component and a computer simulation, essentially the
same systems architecture can be described. See Figure 1.

SIMULATION

ARTIFICIAL
TUTOR

SERVICES

STUDENT STUDENT

Figure 1. Pedagogical Services of Simulations for Tutors

We can describe the uses that a human tutor makes of a simulation or a real system
during procedural training as requiring certain services of the simulation. Simulations
must provide a similar set of services to an artificial tutor, if that tutorial component is to
make effective use of the simulator for training. While it may seem odd to speak of a real
system providing the service of permitting that the tutor manipulate one of its controls, a
systematic approach to describing the interactions between tutors and simulations (or real
systems) makes it possible to identify universals of procedural instruction.

During procedural training, many types of instructional interactions take place. Some of
these are not unique to procedural instruction, but can be found in many types of
education and training that do not involve interactions with behaving systems
(simulations or real systems). Examples of such instructional interactions include verbal
explanations, questions to the student and the corresponding answers, and so on. In
Figure 1, these types of interactions are represented by the light gray arrows between the
tutors and the students. The focus of this discussion is the types of instructional
interactions that make direct use of features of the behaving environment. In particular,
we are interested in identifying the simplest types of instructional interactions, which we
call instructional primitives. More elaborate types of frequently observed instructional
interactions are composed of sequences of such simpler types. The details of these
instructional primitives for complex procedural learning are presented in Munro, Surmon,
and Pizzini (in preparation), which also describes the underlying services that a simulator
must deliver in order to support these types of instructional interactions. Here is a simple
summary list of the major instructional primitives:
* Require Indication—The student is required to point to a simulated object, and
receives progressively more explicit prompts to enable him or her to do so.

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

* Draw Attention to—An object is made visually prominent (perhaps by flashing a
bounding box around it).

* Set Value(s)—The instruction changes some aspect of the interactive simulation
by setting one or more values of attributes of the simulation.

* Perform Manipulation—The instruction changes the simulation in the same way
that the user could, by carrying out a simulated action.

* Pause (Resume) Simulation—Freeze the simulation. And, when desired, start it
up again as though no time had passed.

* Require Manipulation—Require that the student user perform a specific action.
Permit no other actions, and provide progressively more explicit remediation to
guide a correct response.

* Require State—Require that the student achieve a specific state of the simulation.
Guidance is less controlling, more patient.

* DoMagic—Invoke some special capability of the simulator. This is a powerful
feature that often proves useful, but it is not used for describing ordinary
instructional uses of the simulation.

1.5. iRides

iRides is general-purpose environment for teaching in the context of simulations using the
instructional primitives described above. iRides is a java program (which can be
delivered as an applet, as a java application, or as a WebStart application) for delivering
interactive graphical simulations and instruction that works in the context of such
simulations. In its applet and WebStart forms, it can be used to deliver simulation-
centered instruction over the Internet or local networks. It has two major components, a
simulation engine that interprets simulation specifications in order to provide the
appearance and the behavior of a simulated environment, and an instructional engine that
interprets training specifications to deliver instructional interactions in simulation
contexts. The first iRides system was developed under Office of Naval Research funding,
which supported the development of the iRides simulation engine, and Air Force
Research Laboratory funding, which sponsored the development of the original iRides
instructional engine. During the course of the present sponsored research project, iRides
was significantly revised, modified, and extended. The most important of these
enhancements are described in Section 2, below.

In addition, during the course of this project we developed a Java-based authoring tool,
iRides Author, that can be used to create simulations and instruction that iRides can
deliver. IRides delivers interactive graphical simulations that are specified by text files
with a ".jr" file format. IRides instruction is specified by XML text files called ".Iml"
files, which make use of the data type definitions in LessonML.DTD files. Before the
advent of iRides Author, the ".jr" simulation specifications and ".Iml" lesson
specifications could be authored either by typing them in a text editor or an XML editor,
or they could be generated by recent versions of the VIVIDS/RIDES program.? In other

2 RIDES and its successor VIVIDS are C++ programs that were developed for Unix platforms,
including Sun OS, The Silicon Graphics Unix implementation called IRIX, and early Santa Cruz

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

words, before iRides Author, one could port a Classic VIVIDS product for delivery by
iRides, or one could use a text editor.

IRides Author is also designed to support the delivery of instruction under the control of
authorable high level instructional tactics and strategies, as described below.

2.0 Authoring simulation-based distance learning with iRides Author

iRides Author supports both simulation authoring and instruction authoring. Simulation
authoring has two major components: creating graphical objects, and specifying how
those objects should interact with each other and with users.

2.1. Creating simulation graphics

Simulation graphics for a particular simulation can be created in a variety of ways: they
can be imported from libraries of simulation objects, they can be drawn, or they can be
imported as images obtained from scans, photos, or other sources. No matter how the
graphics are added to a simulation, they can be assigned a variety of interactive behaviors
using the iRides simulation language, as will be described below.

2.1.1 Importing simulation objects. Previously authored simulation objects can be
imported in iRides Author, using the Insert command from the Edit menu. Choosing this
command opens a file-picking interface that can be used to select an iRides object file for
insertion into the present simulation. The selected object is placed in the topmost
simulation window. If an object has defined (previously authored) behaviors, those
behaviors will be imported along with the object's graphics.

2.1.2 Drawing objects. An author can draw an object by selecting one of four drawing
tools. In Figure 2, the leftmost option is the selection/simulation tool. This tool is used to
select graphic objects and to interact with them as a student/user would. The four tools to
the right are the rectangle tool, the ellipse tool, the line tool, and the multi-line tool.

Figure 2. Drawing Tools in iRides Author

The first three of these tools are used by dragging the mouse from one point to another.
The multiline tool is used by carrying out a series of clicks to set vertices, double-clicking
to end the process of drawing an object. Authors can activate a grid (see Figure 3) that
will constrain drawing actions to the intersections of the grid.

Operations Unix. VIVIDS/RIDES could be used to develop interactive graphical simulations and
training scripts that worked in collaboration with these simulations.

ONR FNC: ADDL—The KMT Project

Figure 3. Drawing Grid

The author can set grid spacing. The Line width control determines how thick the lines
are in a drawn graphic object.

2.1.3 Importing images. Another type of simulation graphic is an image. IRides can
display images that are imported from jpg or gif files. Authors can create image files
using digital cameras, scanners, and graphic editing or authoring tools, and then use these
images as simulation objects. Each such image is a single, unitary graphic component of
a simulation; it can be assigned certain interactive behaviors, but the simulation cannot
make different parts of the image behave differently. The image objects as wholes can be
made to move, rotate, scale themselves, or disappear and reappear.

2.1.4. Grouping graphical objects. In a sense, there is a fourth type of graphic object in
iRides, a group whose members can include any mix of any of the types of graphics
(including, of course, other graphical groups).

2.2. Graphical attributes and graphical behaviors

2.2.1. Four universal graphical attributes. One aspect of interactive behavior in an iRides
simulation is appearance changes. The way that a given object looks at any point during a
simulation is largely under the control of its graphical attributes. Every graphical object,
no matter what type, has four attributes: Location, Rotation, Scale, and Visibility. Motion
is simulated by changing the value of the Location attribute. The orientation of an object
is controlled by the value of its Rotation attribute. The Scale attribute is used to determine
how stretched or compressed the graphic is. The value of the Visibility attribute controls
whether an object can be seen at a given time or not.

2.2.2. Controlling graphical behavior. Attributes can be given rules that determine the

value of an attribute. For example, if this rule
if MouseDownIn(self)
.8ys.MousePosition

is assigned to a Location attribute, it means that when the left mouse button is held down
while pointing to the object, the object's Location attribute will be set to the position of
the mouse. (.sys.MousePosition i$ a special attribute that always holds the current
location of the mouse pointer whenever the mouse button is down.) As a consequence of
this rule, as a user drags the mouse with the button down, the object will move along with
the mouse pointer. This simple rule can make any graphical object a user-moveable
object.

2.2.3. Simple graphical animation. Similarly, if an author has drawn a line that is to be
the second hand of a simulated wall clock, a simple rule can be used to ensure that the
hand will turn at the rate of one cycle per minute. There are 60 seconds in one minute of

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

time, and there are 360 degrees in one complete rotation. Therefore, the second hand
must rotate 6 degrees every second. This can be controlled by a simple rule for the
Rotation attribute of the second hand that refers to the special attribute . sys.Clock,
which always holds a time value, expressed as a number of seconds.

.8ys.Clock * -6
This rule will update the rotation continuously as the clock value changes. The value of
.sys.Clock changes many times per second, so the second hand will rotate continuously.
(The reason that the "-6" factor is negative is to cause rotation to the right, at a rate of 6
degrees per second.) If the author wants to simulate the type of clock second hand that
moves only once per second, the rule can use the trunc () function, which returns only
the whole number part of a real number.

trunc(.sys.Clock) * -6
Note that both the earlier example rules for controlling a Location value and the rules for
controlling the Rotation of a clock's second hand exhibit animation, but that the author
does not have to be concerned with managing a repeating loop that controls when these
rules will be applied. Each is automatically applied whenever it can be. For example, a
rule that refers to the value of .sys.clock will be applied whenever the clock value
changes. This automatic updating is one of the advantages of using iRides for simulation
delivery, rather than using a programming language that requires creating all the
simulation control independently in each simulation.

2.2.4. Graphical attributes for objects with lines. The four basic drawing tools (rectangle,
ellipse, line, and multi-line) create graphical objects that all have intrinsic attributes that
control the color, style (dashed, etc.), and width of the lines. The names of these attributes
are PenColor, PenStyle, and PenWidth. Three of the four basic drawing tools (rectangle,
ellipse, and multi-line) also have interior areas that can have color or patterns. The
attributes that control these graphical characteristics are FillColor and FillPattern. One of
the options not available in VIVIDS is to use graphics files as sources for textures. The
author can specify in FillPattern what image file should serve as a source for the texture
of a graphic object. It is possible to make the colors and other graphical characteristics of
any of the basic drawing tool objects change in response to user events or in response to
changes in simulation attribute values, simply by writing rules that determine the values
of their intrinsic graphical attributes.

2.2.5. Tools for color selection. Authors can use color selection tools to determine the
colors of lines and fill areas. See Figure 4, below

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

(oo iRidesAuthor
File View Edit Do these in order
i O E@ & show Grid S{i Line wid

i NN

o

Pen / Fill Color |-

e v

R ||
| AR

{ | Een
||

Figure 4. Drawing Tools in iRides Author

In addition to selecting pen color and fill color with this interface, authors can choose the
transparency of the pen and fill areas for graphics that have the PenColor and FillColor
attributes. Transparency can also be controlled by authored simulation behavior rules.

2.3 Tools for Authoring Behavior

As was mentioned above, the behavior of attribute values can be specified with relational
rules, a type of one-way constraint programming (Munro, 2003). In the course of this
research program, a set of behavior-authoring interfaces that had been partially developed
previously was completed, debugged, and tested.

2.3.1. Extended simulation language. The iRides simulation language was extended
significantly in the course of this project. The full language as of May 2004 is
documented in The iRides Simulation Language (Munro, Pizzini, and Johnson, 2004).
That document is included as Appendix A to this report.

2.3.2. Integration with CRESST data services. The new simulation function putURL
supports sending data to the CRESST database. Thanks go to Matt Zhang at CRESST for
support on this effort.

The CRESST Concept Mapper was also integrated with iRides. It is treated as a special
type of Query. A student's concept map is submitted over a network connection to an
Oracle-based CRESST assessment system that returns a number that represents the
'expertness’ of the submitted map. This value is the Query result, and an LML lesson can
refer to it to determine a subsequent course of instruction.

10

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

2.3.3. Simulations with COTS graphics. A special version of iRides was created that uses
an SVG (Scalable Vector Graphics) renderer. With this version of iRides, one can use
Adobe Illustrator or CorelDraw to create a simulation scene. By following appropriate
naming conventions for the SVG objects, a simulation author can write iRides rules that
control aspects of the appearance of the SVG objects. At present, this version of iRides,
called siRides, has certain limitations, such as unexpected rotation behavior. (All graphics
have their origin in the lower left corner of the 'page’ or scene.) Additional work would be
required to make siRides a competitive alternative to standard iRides.

2.3.4. Behavior authoring aids. In early releases of iRides, copying and pasting was only
possible for text. It can now be performed on attributes and events. The Cut, Copy, Paste
and Delete operations can also be undone and redone.

An aid to tracing the rules that refer to an attribute has been developed.

T R T et

T\lie\;v Edit Auribute Event Template

, 1;,‘4 RQAO)‘ {Cut3 (o N e (‘Dﬂe(e“"

Name “p.81_ Lstider.track.

Clone of Template © T RS Lstider track Location” psad by 3
Aebwes o jMiew EdR
TName T Nalge Attributey
Location (-1.251.25) :.p.St_Lslider. TrackPr
Rotation 0 :
Scale [1,1)
Center “*BOGUS*”

Visibitity true

Events

Figure 5. The 'Used By' Command Opens a List of Attributes that Use This Attribute

The ‘Attribute’ menu of the object data view has a command, ‘Used By’. When this
command is issued while an attribute in the object data view is selected, an interface
opens that lists all of the Attributes and Events, if any, that refer to the selected attribute.
Data views of those attributes and events can then be opened from that ‘Used By’
interface.

A toolbar with icons can be used to carry out frequently used operations such as Undo,
Redo, Cut, Copy, Paste, and Delete.

A right-button menu was added to iRides Author to support opening object data views
and carrying out other common operations. If the properties file for iRides (btl.prp)
includes

graphics.authoring=true
then a double-click in a simulation object brings up the editable data view of that object.
There is no need to go through the two-step process of right clicking on the object to

11

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

bring up a menu and then selecting a command from the menu to open the object’s data
view. However, if the object is part of a hierarchy of objects, the view that is opened may
not be the one desired. For grouped objects, using the right-button menu makes more
sense, because it offers access to all the objects in the hierarchy.

2.3.5. Debugger. An iRides Author debugging tool was added to the authoring
application. It allows authors to trace executions by stepping through the executions of
events and of relational rules. The debugger can show the text of events, including the
comments, and can accurately point to each statement as it is executed in turn by
Stepping. In Figure 6, the pointing hand icon at the left indicates which line of the iRides
Event will be carried out next, when the Step button is pressed. (Clicking on Step Out
would complete the entire event without stepping through the remaining statements
individually.) Authors can set break points on relational rules and on events.

View Edit Steplitems -

|

Stepout (i S!epmJ] Stop i

{Event Body: .sys.iftBusSwitch.toggle.HandleClick.
{
if .sys.fBusSwitch.state <= "NORM"

then

.8ys.iRBusSwitch.stale = "NORM";
else
.Sys.MBusSwitch.state = "OFF";

}

Paused Attributes and Events
.sys MftBusSwitchtoggle.HandleClick.

“Siep tem

1
i
-

Figure 6. Debugging Window with Formatted Simulation Rules

The Step In and Step Out features were not present in earlier BTL debugging tools. When
an author is stepping through the execution of an event and a call to another event is
encountered, the Step button will cause the statement with that call to be evaluated in its
entirety, and the debugger will advance to the next statement. If the author instead
chooses the Step In button, the debugger will display the first line of the called
event/function. Authors can then step through the statements of that function. When
execution is stepping within an event, an author can choose Step Out, which completes
the execution of the current event and then pauses again at the next executable statement
or relation.

2.3.6. Cloning objects. iRides objects can be cloned under rule control. Each clone of an

object has the same values and rules as the template object that it was created from. The
values can be altered under the effects of the interactive simulation. Cloned objects can

12

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

also be deleted. The addition of cloning significantly extended iRides capabilities beyond
those of RIDES, because simulations with indefinite numbers of transitory objects are
now possible. This feature was used effectively in the Engineering Duty Officer's Data
Analysis Tool simulation, described in Section 3.2 of this report.

2.3.7. Authoring tools in support of cloning. A user of iRides Author can create a new
clone template by selecting an ordinary object and directing that a template be made from
it. When this happens, the template is created, and the object is automatically designated
as the first clone of that template. Users have several ways of selecting a template for
editing, as well.

Authors can create new clones interactively in iRides Author, using a menu command in
the template data view. Clones can also be created under rule control.

2.3.8. 'Native' user interface elements in iRides simulations. New iRides simulation
language functions will allow an author to present standard user interface components,
rather than requiring that such components be reinvented in the iRides simulation
language. For example, the Text Entry Dialog function makes it possible to use a ‘native
text entry object, such as the one depicted here:

Select problem (1..2):

This user interface has several advantages over the one created using the primitives of the
iRides simulation language.

A blinking insertion point

Selectable text

Deletion of selected text

Typeover of selected text

A ‘native’ look and feel

2

Similarly, popup menus, which can have submenus, can be added to a simulation, using
an iRides simulation call that invokes the native Java Swing menu interface object.

2.4 Tools for Authoring Instruction

2.4.1. The LML language and its interpreter. IRides lessons are specified in XML files
that include reference to the Lesson Meta Language data type definition. An iRides
instruction interpreter reads these instructional specifications and interactively delivers
them to students. In the course of this project, two phases of development of the LML
interpreter have occurred. In the first phase, the original iRides interpreter (developed
with the support of the Air Force) was debugged and utilized. In the second phase, this
language was revised and simplified, and the LML interpreter was revised to
accommodate these changes in the instructional specification language. Thread locking
problems were thereby eliminated, and the lesson delivery system is now reliable, as well
as being flexible and powerful.

13

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

2.4.2. Customizable user interface for instruction. IRides has been given a number of
customizable features for student interfaces, in addition to the complete customizability
of the simulation. One of these is that the command buttons ('Continue', 'Help', etc.) can
appear in a variety of locations and can have text labels or icons. The choice of members
of the set of these buttons is completely up to the author. Another area of customizability
is the interface for presenting textual instruction. This interface can be within the
simulation window, or above, below, or to either side of it. It can present either simple
text or HTML.

2.4.3. Micro-assessment interfaces. During training, it is frequently necessary to check
that a student has understood a presented concept or fact, before proceeding to new
material or before providing practice in applying the concept or fact. The iRides Query
system was extended in a number of respects. Query windows have been made floating
windows, so that they cannot be accidentally buried under simulation windows or
presentations. Alternatively, authors have the option of specifying that queries be
embedded in the window that presents instructional text. Each of these options is useful
in certain training circumstances.

Each type of Query can have an associated authoring template that specifies the
interactive structure of that type of student-tutor interaction. Each such template can have
an associated graphical user interface for specifying the content of a particular Query. For
example, by using a ‘read indicator’ instructional template, an author can specify a few
property values that determine the content of a particular set of 'read indicator' query
interactions. The lesson will ask the student to find a particular object and identify the
value of one of its attributes. This interaction will be placed within a loop so that the
student can have more than one chance to produce the correct response. A lesson
authoring dialog in iRides author supports the specification of this type of instructional
interaction without requiring that the author be able to read and edit XML.

A table Query interface and a page entry interface for Queries were implemented. These
allow the presentation of a set of questions from a single GUI. In the table interface a
table is shown with any number of cells. The cells may display an initial value. When the
user clicks on one of the cells, a simple Query GUI appears, such as a text entry or a
radio button entry. When the user responds to that Query, the response is recorded in the
cell. An OK button is present in the table interface; it is clicked on when the user is
satisfied that all the cell entries have been satisfactorily responded to.

‘King George It

“United States? i
Joeorge George Bush

Figure 7. Answering a Text Question in a Table

14

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

Express 4000 miamps i tom of

Figure 8. Answering a Numeric Question in a Table

As with simpler questions, an author can control many aspects of the layout and structure
of questions using the LML specification format. A dialog interface in iRides Author
simplifies the production of these specifications without manually writing the necessary
LML text.

The page Query allows a more direct representation of the set of queries. It might display
one or more text Query interfaces, or radio buttons, or check boxes. For numeric Queries,
the user clicks on what looks like a text Query interface to bring up a keypad interface.
An OK button is present in the page interface; it is clicked when the user is satisfied that
all the entries have been satisfactorily responded to. Additional features were added to
iRides to support the recording of student performance data in micro-assessments.

2.4.4. GUIs for authoring instruction. Prior to this project, the only practical way to
author instruction was with the Linux program VIVIDS. (However, a group of developers
associated with the Air Force Research Laboratory successfully authored substantial
iRides instruction applications directly in the LML language, using modified Emacs
editors.) Authors can also specify multipart questions in the form of tables, as shown in
Figure 7and Figure 8, above. Selecting a cell in such a table opens an interface
appropriate for that type of sub-question.

15

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

There is an instruction tracing interface in iRides Q0 O file:/Users/allen/irides nvdemos /marksmar
that lets users see the currently active instructional e Kl Help

7 Ml Play r]
' {

elements in an active lesson plan. Authors can vi3| suspend

troubleshoot lessons by taking the role of a student M gf.ﬁl{:“»‘
opk bt

interacting with the lessons and observing the flow
of instructional activity in the instruction tracing
view. Commands are available for pausing and
resuming instruction.

This view of a lesson can be opened by using the
Lesson Dataview command on the View menu in
iRides Author.

deblemant

LR PresentUritlernent

| LMLCodeblement
L LMIWaRtElement
™ LMt pdeElement
rogun_close

%

Figure 9. Tracing Instruction

2.4.5. Authoring with higher-level instructional templates. Authors can create reusable
instructional templates (not to be confused with the simulation object templates
mentioned above). These ‘'micro-lessons' written in LML can be invoked from calling
lessons, which can specify the content for each particular invocation of a micro-lesson.
Furthermore, one instructional template can invoke another, passing on the content with
to its subordinate template. This facility makes it possible to build up larger instructional
patterns from smaller ones.

The iRides Author package has been designed to support extensions to the instructional
authoring system. A programmer can create a new template-content specification dialog,
which is used to fill out the content choices for a particular use of an instructional
template. IRides Author has a number of templates with corresponding authoring
interfaces. These templates provide the core functionality of the scoring items of Classic
VIVIDS. The meanings of these basic templates can be summarized as

Require that a student point to an object
Remediate if the student fails
Watch for a particular simulation state and respond
Require that a student read an indicator
Require that a student carry out an action
Remediate if the student fails to carry out the action
Require that the student answer a question
Each of these templates replaces a page or more of detailed LML, so the lessons that
make use of these templates are much more compact and readable than if they contained
all that low-level LML code at every invocation.

16

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

The extensible lesson-authoring interface has an option for authoring ‘cycle’ patterns of
instruction. This interface is used to apply the strategy of teaching a set of items by
randomly selecting from the set repeatedly. Items that are correctly responded to for a
specified number of trials are dropped from the practice set. In this way, the student
continues to receive practice only on the less well-learned items. Using the interface, the
author may specify the initial text, the total completed answers required (defaults to the
number of Query items in the cycle), the number of consecutive times a question must be
answered (defaults to ‘1°), and the Query items that make up the cycle item.

; @ text O speech Simple Query @ “Select One’ Query © ‘Sélé#t Many’ Qliery - v ’
You will now practice naming the major controls in this shipboard ? . What is the name of the b'ridge contro! that‘se‘ts the deslre)d\\spéed fortgé g/as‘
: system. Question turbine engines? ,
Initial Text : '
‘ e (3 iThe engi‘ne speed v"emierb
\ 3 [The throte
Consecutive Correct Reyuired |2 . Total Correct Required 19 C3*[The local contro!

{ Cancel Query || Acrent Guarnr 1

Figure 10. Authoring Cyclic Practice

3.0 Examples of simulation-based distance learning

The iRides technologies have been applied to a number of small test cases and to two
major new Navy-related training areas. The first of these is conceptual aspects of Marine
rifle marksmanship. The second is training on complex decision making for Navy
engineering duty officers.

3.1 Conceptual Aspects of Marine Marksmanship—Databook Training

The Databook Training research product provides an interactive graphical environment
for Marines to refresh their knowledge about the correct use of the data book. It consists
of four modules designed to teach Marines concepts and conceptual skills that are
correlated with good performance, particularly among novice shooters. One goal was to
contribute to the elimination of 'Unqualified' shooting results during annual
marksmanship certification.

The databook training product consists of four components.
Sight picture—The meaning of the term; what shooters should focus on
Databook—An introduction to the correct use of the databook on the firing line
BZ0O—How to carry out the Battle Sight Zero procedure using the databook
Shot Group Analysis—Recognizing shooting errors from shot patterns

17

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

This section briefly describes the four modules created.

3.1.1. Sight Picture. The training begins by briefly pointing out that the human eye can
focus sharply on objects at only one distance at a time. An animation shows the target,
sight post, and rear sight going in and out of focus. The trainee clicks to continue. The
appearance of each object in focus is presented again, one at a time. The trainee clicks to
continue.

Then the trainee is given the opportunity to control which element is in focus. See Figure
11, below. The trainee clicks to continue. The trainee then uses the same control interface
to select the correct focus (the front sight post) for shooting. If the trainee makes an error,
he or she is immediately informed and is given another opportunity. When the trainee
selects the correct focus point, the lesson says that it is the correct one and announces that
the lesson is over.

The GUI presents overlaid images of a target, a sight post, and a rear sight. The edges of
these images are ‘fuzzed out’ to represent the image appearance when not in focus.
Trainees are able to observe the differing appearance of these images when the focus is
on each of the three objects in view. The marine’s understanding of proper sight picture is
tested by providing the marine with a control for setting the appropriate focus for
accurate shooting. See Figure 11.

u\'\«&w! s~¢v~@» e
Click confiriun whery frilshed

- target

Figure 11. Sight Picture Training

3.1.2. Databook Introduction. This web-deliverable interactive training module presents a
structured walkthrough of the use of the data book for Marines.

18

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

DAY 1 KD FIRING a
{Lsmuz mm: o S0)mmmz-mmLN b
i plas WIND RQ 353

FRONT - REAR WIND
WLV BV

HEAR WINR DRECTHN
FLEV

AR

{
i
>
|3
= =
TS

REAARKS

ALALA

Fieviacn] | b, wvats not : g .

“+Mhve Il ¥ettings should be 5 up. 4 right. : R

Wad To edtor these setings, ofick the arows by the mmmnnmuammmmrnmmv-am
To extter the windage. cick the nrirws by (rey btz saar the R i the WIND' sotfion .

:Giwnuuhlvtymu .

9 PR N
. INCEDS
ZERQ minus WIND TRUE ZERO
FRONE graR WIND BIRCCTIN PRONT - REAR WIND
v 2 b IRV Ay
i
U S " 3 TR AR ISANeL A 447 e
1 : :
o * . 4 LAY N b 3 6. ‘ L
HALY ' 1 2 3 -

Figure 12. Review of the Meaning of True Zero.

It begins by reviewing the meaning of “True Zero” and guiding the Marine to enter the
weapon’s current sight settings in the True Zero section in the upper left corner of the
data book page. If the student makes an error, the module points out the error and guides
the Marine to enter the correct values.

DAY 1 KD FIRING
BEFORE VIRING
TRUE ZERO

FRONT Reag
£y ELEY

00 < YARD SLOWHIRE - kN?EL*\(x 4 5
WIND LERQ

RicEl WONT REAR WIND
BV aey

WIND

—_
»
x

REMARKS

|
|

SRR

T

/\\ f /\\

N um:mummmmumnmmummnmmmn.xmm > indcated, f
V.Mimmpmm.mdmhm‘ mphy .

j Ciick the fag $at reprovents that wind speed

=)

€ sdipe amd Fhckn Mtmerts

L S T S)

ity
BIRFCION

PRINT REAR WINI2
nEY [3EXY

R,

FKONT NEAR WIND
eV FLFV

I S

Fzgure 13. Zero Reﬂects Current Wind Conditions.

19

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

The training module then guides the Marine to consider current wind conditions, and to
correctly estimate the sight adjustment that those conditions call for. It then guides the
completion of the Zero section of the data book page in the upper right corner.

Once these initial settings have been correctly recorded, the Marine on the firing line will
fire a group of shots and make any sight adjustments necessary. The Marine is taught
that, although the actual sight settings of the weapon are recorded in the original True
Zero and subsequent Zero boxes of the data book page, the During Firing section of the
page is used to record adjustments, not absolute sight values.

As the training module progresses, the learner is shown the target in a sight picture
context that reflects the focus of the shooter’s eye as he or she estimates the point of aim
at the moment that a shot is fired. The Marine must remember this point of aim so that it
can be recorded in the During Firing section of the data book. See Figure 14.

e iy s rough e i b Yot sy acanere o8 yous e b |
Collng ¥ 1o crucie " :
&

Yo oftse g W gl
"t thve woriec esstand the shot was kad. .
=

P ok goen. |

Figure 14. Sight Picture and Calling the Shot.

20

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

DAV KD FIRY

SEFORE FIRING S
TRUE ZFRO

200 - YARD SLOWFIRE S KNEELING T E 0
WIND -

RO

FRUNT gial WIND DEICTHN FRUST RFAR WIND
WEV Ry ELEY ey
CERt s
sy oy
L_D,;' EP [
N REMAHRS
v “
lg i iy
¥ e
H N
H ;’\ ~, <
R S I
Wad \ /; ! [;
3 PR TEER A SO L id s
A /“\\ [
N | C
s o . .
W °¢
\M\« - p ey ¥ 3 3
RERING INCHTS

ZERO miniis WIND

. P FTEN PR
"] Entar the comect sdustment In e boxes under the fourth Eafl tget. *

Prues DK whren youe Saished

b
S

Figure 15. Adjusting Sights After the Fourth Shot.

The learner is also reminded that actual shot positions are to be recorded in the Plot
section of the data book page, in the center area. After a group of three shots has been
fired, the Marine is guided to enter any necessary adjustments at the fourth shot portion
of the During Firing section. If incorrect values are entered, the Marine is given guidance
on how to determine what values should be entered in this section.

21

Award 0070-G-CH640 (N00014-02-1-0179)

ONR FNC: ADDL—The KMT Project

FRONT REAR wh
BLEV BLEV

St wn L

FRUNT REAR WIND
FLEY HEV

—4

REMARKS

: i " g,
. You gaugs S speed ot sppraxinatoly 10 irph.

Pl e S wdod,

B md Kk Hn Aoy

From Sieb Mowive
w Febe¥ 4 17w datye
Winduxs s 5 ol 14 BANK

mings

TRUE ZERQ

FRONT REAR WIND PURECTION

FRONY REAR WIND
HEV AV

e, o QR

HALF

When the entire five-shot group has been completed, the weapon’s current sight settings
are to be entered into the After Firing Zero section in the lower left corner of the page.
Finally, the learner is told what the final wind condition is, and is led to deduct the
windage value from the Zero settings to determine True Zero.

3.1.3. BZO. The training begins by displaying a depiction of the firing range and the
rifle’s sights. A brief presentation on the mechanics of the simulation is made, followed

by the doctrinal definition of a BZO (Figure 17).

22

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

£, JRidesPlayer
firing_range

1| What is a BZO?

Battlesight Zero (BZO) is the elevation and windage settings required to place the center of a group of shots in a predesignated
location on a target al 300 yards under idea! weather conditions. By 'ideal!, we mean 'no wind'. A BZO is the sight setings
placed on your nifle for combat 8/3 is the rear elevation setting for BZO

Of course, the BZO you placed on your rifle the fast time you fired it is probably not still the BZO. Maybe your shooting style
has changed; maybe the ammo you're firing this time is different now; maybe you're just wearing a different shirt today - ali of
these wilt change the BZO

Press the Continue button to go on

Figure 17. BZO Doctrine Presentation

The trainee is asked to take three shots at the target. If the sights are not at least
reasonably close to the target, the trainee is asked to pay closer attention. After a group of
shots is fired, the target is animated to mimic being pulled into the pits and being marked.
When the target comes back up, the scene zooms in on the marked target to show the
group, and the trainee is asked to indicate the proper sight adjustments that should be
made (Figure 18), and receives feedback on the accuracy of their judgment (Figure 19).

23

Award 0070-G-CH640 (N00014-02-1-0179)

{7 firing_range [292.0, 306.75}1220, 368] |

=} owe (119.5,5195H2, 2161

Fronk Sight:
v ore click = 1 14T at 100 yark
i [Rew slevatn: "
one click # 1 inch at 100 yaidy ™
Reon windage:
ane elide x 12 ineh 3t 100 yarrs
.
o
.
- ‘@5;» S
-
5 <
ST S
Getting a BZO, part 2:

Ok, Now the target is going down to be marked. It'd be nice if the pits were this fast in the real world.

Now you have to adjust your sights. To do that, just ctick the up/down or lefi/right buttons as appropriate. You should consult
your databook to find out the appropriate number of clicks based on the target size.

hint: s about 36 inches from the center of the target to the edge of the camvas.

When you're finished, click the "done’ button in the upper right

-] twing_range £333.5, 300251303, 40] ’

s
s
A
. Sei
a8 3
L4
m—
[
0
Windage adjustment Too inttle on this one ...
Elevation adjustment and too much on the elevation.

. Go ahead and see how these sight settings look Press Continue to fire another string,

Figure 19. Feedback on Sight Adjustments

24

ONR FNC: ADDL—The KMT Project

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

This procedure is repeated twice more, in accordance with the proper procedure for
obtaining a BZO. As a conclusion, the trainee is asked to remove the appropriate windage
settings in order to obtain a True Zero, and is remediated until he or she is successful
(Figure 20).

%] nring_renge [321.5, 301.2511279, 369 {73 gun 1340.5, 685.5)-1223, 50} ©
1 ot Sight
one click = 1 14Y at 100 yauk
Rear elevaton:
ana clid = 1 inch & 000 yards @
Reac windage
oiw clide = 12 inch at 100 yais

front . reax Pwindage

w1, 4 i persaint
: r.thr.:

BZO, the conclusion:
Ok, by now you shoutd have your groups all in the black
What you have on your rifle now 15 a 'zero’, but not a ‘Battlesight Zero'. A BZO is a zero at 300 yards, like the zero you have

now, but the BZO is a zero under ideal circumstances - in other words, a zero but with no wind

So to get a BZO, you take the adjustments for wind OFF your zero. Take a look at the wind direction and speed indicator at
the bottom of the window, and take the appropriate number of clicks off your sights

For instance, if the wind is from the Jef2, move your sights the given number of clicks to the right

Press the done button 10 go on

Figure 20. Explanation of Final Adjustments

3.1.4. Shot Group Analysis. The training begins with a page of the databook displayed
and an ‘instruction menu’ from which the trainee can choose an entry point — either a
discussion of shot pattern analysis, or practice at recognizing shot pattern. (Figure 21).

25

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

£)E

StartHere

| BRI PP PR P RPRPRPRERER]

ot g o
. o . L
% L3
N SAPRSSEGEAN
K TN :
i
B
o8 s La
5
ER] .
ADIUSTES
Check the follreing JLOHT SEXNINGY
1 Rfle o bl 3 gronp
2 Fundameants can be apptiad 1 show $ gooip

Figure 21. The Databook view in the Shot Pattern Analysis Training Module

In the ‘Practice’ mode, trainees are shown a series of shot patterns and asked to identify
them. They are presented with questions and menus of possible answers. (See the upper
left area of Figure 22.)

w would you describe the shot distribution inthe

Jeftmost target? L S :
5 IS : ;
| 5 the'shots are pretty imich in 8 ine, up and dawn |, ot e & 1710, 3795126, 214) |

. :

[7' The shots are pretty much in alins, len to right.” _Jof one
‘Tha Stiots are random aod not very accucate, - -

‘Thé shots are tightly grouped um!m:mata.)

| on |

MRS «
L

Chrk the foffexing
1. Rific can hold a grour,

2. Pusdamess

5 can by applie? w shewd 3 grovp

Figure 22. Question and Answer Menu

If the trainee makes an error, he or she is shown a simulation of the actual cause of the
shot pattern and how it arises. Figure 23 shows the remediation for failing to recognize
poor trigger control:

26

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

¥, IRidesPlayer
Start Here

o
Now, we're golng ta fire off a few rounds with poor trigger control. D trigger_squeere_demo
Notice how when you pull the trigger in a jerking mation, it rotates the {1 ™ i
whole gun. Although this rotation Is very slight, at 200 or 300 yards it
can make a BIG difference.
Hit ‘Continue'to go on

pro 0P view

As you tan see, even slight rotations caused by jerking the trigger
can have dramatic Impact

Press 'Continue’to continue with the rest of the lesson

Figure 23. Explaining the Effects of Poor Trigger Control

3.1.5 Follow-on Work on the Databook. Working together, the Marine College of
Continuing Education (CCE) and the Weapons Training Battalion have funded and are
now managing the transition of this training software for initial use in a Rifle Coaches
Training Course. From the Marine Project Charter: Rifle Marksmanship Coaches
Toolset—

The Marine Corps College of Continuing Education (CCE) mission is to design, develop,
deliver, and manage DL products and programs for the Marine Corps, in order to increase
operational readiness. The CCE’s Courseware Development Department provides project
management for the acquisition of DL courseware, job aids, and software tools.

Weapons and Training Battalion (WTBN) Quantico is the single Marine Corps point of
contact for marksmanship doctrine. The WTBN staff have been involved in on-going
marksmanship research to evaluate the effectiveness of new techniques for assessing a
Marines knowledge of the fundamentals of marksmanship and its impact on their shooting
performance. WTBN has contributed to the development of prototype assessment
instruments and training tools that positively impact shooting performance. These tools are
based on the Marine Corps-approved rifle marksmanship doctrine and programs of

instruction.

¢ Electronic Rifle Marksmanship Data Book Training Module. The Data Book module
is a software application that will train four basic marksmanship tasks: data book
usage, sight picture, battle site zero (BZO), and shot group analysis. The module will
be developed in two versions as student-controlled and instructor controlled training
modules.

27

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

3.2 Decision-Making Training for Engineering Duty Officers

3.2.1. Training a Complex Decision-Making Task. The Navy's Engineering Duty Officers
(EDOs) manage large scale development and procurement processes. During their initial
training in a six week EDO Basic Course, EDO candidates are taught about making
complex decisions as part of project risk management. The students, who have higher
degrees in one or more engineering disciplines, must learn to make complex decisions
that incorporate the uncertainty of future events, and to convincingly present their
acquisition recommendations to senior Navy officers for approval. During the Basic
Course, students are given a variety of techniques for mitigating project risk and for
making complex decisions. Exercises are conducted in which teams of students analyze
risks in assigned projects and make formal presentations to boards of reviewing officers,
who are, in fact, faculty members of the EDO School.

When the KMT team approached the EDO School faculty about their needs for effective
training and assessment of students, the faculty members asked for help in training and
assessing decision-making skills in the context of the assigned project exercises. In
particular, during the final exercise, students are asked to address a mid-procurement
project crisis—the vendor of an important ship system (the Refueling at Sea system, or
RAS) has decided to go out of the business of providing that system. Student teams must
determine and evaluate possible options and present their recommendations to the review
board. What could be done to make this experience one that reinforced decision-making
skills taught in the course, and how could the students' application of those skills be
assessed?

Several topics presented to the students in the course drew themselves to our attention.
One of these is the topic of multi-attribute measures of utility. Early in the course,
students are presented with an example of choosing a restaurant for dinner. Four possible
restaurants are considered, and each is given a simple numerical score on such attributes
as nearness, expense, atmosphere, and food quality. The concept of weighting attribute
scores differentially is also introduced, and a simple Excel worksheet for computing the
'best’ restaurant outcome based on weighted attribute scores is presented. At this stage of
the course, the students have been exposed to these concepts:

» Multiple components of utility (attributes)
* Weighted attribute values
* Use of computer-based tools to support decision modeling

Later during the course, the faculty briefly introduces Expected value theory as a more
sophisticated framework for making such complex decisions. In addition to estimating an
outcome value for each alternative choice (by summing the weighted attribute values of
all the potential consequences of that choice), the students also make estimates of the
probability of each outcome, given the preceding choice. The expected value of a
decision is computed by summing the probability-weighted estimated outcomes of that
decision. Although it would be possible to repeatedly make such estimates of probability
and attribute values and to repeatedly compute expected values by hand, this task clearly

28

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

would benefit from the use of computer-based support tools. At this stage of the course,
the student's have also been exposed to the concepts
» Alternative decision outcomes can be assigned estimated probabilities of
occurrence
* Expected values can be computed from estimated probabilities and the sums of
weighted outcome attributes
* Decisions can be made based on expected value analyses

CSE and BTL decided to build an experimental tool based on the above concepts. The
tool would have two purposes: to contribute to the students' understandings of these
topics, and to provide a natural, problem-centered task for collecting data for assessment.
The tool would have to be simple, so that students could learn to use it very quickly. That
would make it possible for them to apply the tool to the RAS problem during the last
project exercise during the course. In addition, it was decided that the tool would be
delivered to the school with appropriate content to facilitate its use in the course. This
content would include a simple version of the tool applied to the restaurant decision
example. This would make it possible to introduce a simplified form of the tool when
multi-attribute utility concepts were introduced early in the course. Second, a simple
example—selecting a digital camera—was developed for use in introducing the concept
of expected value. Third, the RAS System decision would be implemented in the tool, so
that students would be able to focus on the estimates they had to make, rather than on the
mechanics of authoring every aspect of the alternatives from scratch using the tool.

3.2.2. Development of the Decision Analysis Tool. The technologies used to implement
the Decision Analysis Tool (DAT) were VIVIDS (Munro and Pizzini, 1998; Munro,
Surmon, Johnson, Pizzini, and Walker, 1999; Munro, 2003) and iRides Author (Munro,
Surmon, and Pizzini, in preparation). This tool was designed to enable training
developers to create interactive graphical simulations and training in the context of those
simulations. The iRides program can deliver the training specifications as a Java
application, or over the Web as an applet or a Web Start application. The behavior
specification language of iRides is sufficiently expressive and powerful that it was
possible to create implementations of a real software tool for aiding decision making
using weighted attributes and expected value theory.

The tool was developed in three phases, which resulted in three releases of the DAT:
prototype, version 1, and version 2. After each of the first two phases, student usage and
instructor comments led to significant revisions that appeared in the subsequent release.
Some of these modifications were designed to make elements of the user interface easier
to learn and to use, to correct algorithmic errors, and to improve data reporting. In
addition, however, a number of changes were made to the tool to bring it into compliance
with the specific teachings of the EDO Basic Course. Examples of this included
restricting attribute utility values to integers between 1 and 5, and including three
standard attributes of outcome utility: cost, performance, and schedule.

3.2.3. Using the DAT. In this discussion, the behavior of version 2.0 of the DAT is
described. The data collection took place using version 1.0, but the major differences in

29

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

2.0 are not relevant to the core issues of operation sequencing in the usage of the tool.
The primary difference in version 2.0 is that users are not limited in the depth and breadth
of the decision trees that can be authored. In addition, the graphical user interface of 2.0
is improved by the use of Java Swing interface objects (sliders, radio button groups,
check box groups, and the like) in place of authored iRides simulation objects with

similar functionality.

If an author begins to develop a
decision analysis from scratch, the
initial display shows only a root
decision node and one simple choice
branch, as in Figure 24. A popup
menu can be used to select among the
commands that pop up when a node
is clicked. On the root node, the
options are "Edit Label" and "Create
Choice" Create Choice is used to add
a new subtree element under the root
node, another possible decision
choice. Other nodes have a "Delete”
option, but the root node cannot be
deleted, only renamed.

Authors relabel the nodes to reflect
the choices in the context being
analyzed and the possible outcomes
of decisions. They can also create
new nodes, including additional
choices, events, and outcomes. At the
development point shown at the right,
the original nodes have been
relabeled and the author has created
two possible outcomes for the first
evaluation: a good result, and a poor
one.

Figure 25. Renaming Nodes, Creating a New Outcome

30

Award 0070-G-CH640 (N00014-02-1-0179)

For a given decision domain,
outcomes have appropriate attributes.
Authors can enter the names of the
attributes that apply to the decision
that is being analyzed. Clicking on
the Utility button opens the Attributes
Definition interface. In the original,
empty DAT document, there are five
attributes named "a" through "e".
Each one begins with an intermediate
factor, 3. These factors are the
weights by which actual attribute
values of particular outcomes are
multiplied to compute the value or
utility of those outcomes.

When the Attributes Definition
interface is closed, the number of
attribute values displayed below each
outcome node is updated, if any
attributes have been deleted or if new
ones have been added. Because the
original attribute names 'd' and 'e'
were deleted, in Figure 27 there are
only three attribute value numbers
below each outcome, although there
were five in the earlier figures.

Clicking on the attribute values of an
outcome node opens the Attribute
Settings dialog. For each outcome,
the user can specify how good or bad
the result will be in terms of each
attribute. In the case shown here, the
Cost result will be neutral (3) if the
parts inventory is purchased and a
good evaluation results. The
performance will be excellent (5), and
the Schedule will also be excellent,
because roughly half of the planned
production run will be completed. As
these values are selected in the
dialog, the numbers change in the
outcome's ellipse in the main screen,

ONR FNC: ADDL—The KMT Project

B e ORI NG s\ e T

i N NSRS R Y

Figure 27. Updated Number of Attributes in Outcomes

Figure 28. Specifying the Attribute Values of an
Outcome

31

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

and expected values are also
automatically recomputed.

Not all outcomes of a post-choice event are equally probable. The expected value of a
choice is dependent not only on the utility of resulting outcomes, but also on the
probability of those outcomes. Estimated probabilities are shown as numbers just to the
left of outcome nodes. When new outcomes are first created, they are equally likely.
(Note the 0.50 values to the left of the outcome nodes in Figure 24 through Figure 28.

Clicking on a probability opens a
Probability slider. In this figure, the
author has decided that there is a four
percent chance of a poor first
evaluation after making the "Buy
Parts" decision. As the slider is
dragged to a new value, the é
corresponding alternative outcome's .
probability is automatically altered so | f
.

that the numbers sum to one. (If an
event has three or more possible
outcomes, the probability of each I
outcome must be set manually.)

Figure 29. Assigning Probabilities to Outcomes

By continuing to add choices and
outcomes, editing the attribute values,
and specifying estimated
probabilities, a user can develop a
rich representation of many aspects of
a problem. In the figure shown at the
right, the values selected by the user
do not result in large differences in
the expected values of the choices
analyzed. The 'traffic light' signal
shown to the left of each choice node
reflects the 'go—caution—no-go'
presentation approach advocated in " o

the EDO Basic Course. Note that all Figure 30. A Nearly Complete Decision Analysis
three choices are marked here with

the yellow 'Caution’' symbol.

32

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

It is possible to manipulate the
thresholds of the signals using a pair
of sliders. Clicking on the button
labeled "Go / Caution / No Go" pops
down the slider interface, as shown in
this figure. Here, the user has slightly
lowered the threshold for "Go" by
dragging the green/yellow slider
down a bit. The third choice is now
marked with a green light as the one
to be preferred. Depending on how
the students set the thresholds, all,
some, or none of the possible courses . T T
of action they propose may produce Figure 31. Adjusting Acceptance and Rejection
“acceptable” outcomes. Thresholds

3.2.4. The RAS Partial Analysis. When students begin working on the refueling at sea
problem, they open a DAT model that includes three obvious choices (the three shown
above in Figure 30), but with all outcomes having equal probability and equal utility.
They modify these estimates to create more nearly complete analyses. They can also
delete choices that they believe are not worthy of consideration, and they can devise and
insert new options of their own.

3.2.5. Recording DAT Usage Data. There are seven types of events generated when
students use the tool (create a new course of action, delete a course of action, label a
course of action, weight the overall importance of utility attributes relative to one
another, set the probability that each outcome will occur, set the utility attribute(s) of
each outcome, and set the threshold values). In addition, the system will generate an
eighth type of event, a “stoplight” event whenever a student action causes the expected
value of a possible outcome to cross the student-determined threshold (e.g. when the
value of the decision moves from acceptable to marginal or from unacceptable to
acceptable).

When using the Decision Analysis Tool, each action performed by a student is recorded
in an electronic “clickstream” file. Each file entry includes a student identifier, the date
and time of the event, the action that generated an event and the target of the event, and
the value assigned to the target of the event. For example: “EDO 33, Monday Feb 09
2004 14:45, label option 1, ‘Buy Full Inventory, $20 M.”

Because students may generate an unlimited number of procurement actions and students
can evaluate an unlimited number of future decisions made about each action, we cannot
identify the specific objects students will create or how they will manipulate those objects
before each use of the tool. Consequently, it is difficult to evaluate a student solution by
comparing it to a single correct solution or to compare one student solution to another
student solution. Furthermore, even if we defined the largest solution space developed by
any student to date as the basis of comparison, the number of degrees of freedom
combined with the small number of clicks on less often chosen targets would make

33

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

meaningful parametric or non-parametric (such as Artificial Neural Network) analysis
difficult. Finally, the instructors at the EDO school have indicated that they do not require
such a detailed analysis.

However, as discussed above, the number of event types generated by a student remains
fixed at eight regardless of the number of objects a student creates. Not only does such a
reclassification have the benefit of providing a more useful level of data analysis to EDO
instructors, reclassifying events at this more macroscopic level has the additional
advantage of reducing the degrees of freedom to a level necessary to allow us to apply
appropriate data analysis methods.

3.2.6. Instructional Guidance for the Decision Aid Tool. Initial development of the DAT
has made use of the iRides simulation language and graphics, to create an interactive
decision-aiding tool with data recording capabilities. The resulting product provides an
environment in which concepts taught in the course could be applied in a tool context that
could be quickly learned. However, the product did not make direct use of any of the
iRides pedagogical features. As Self (1995) has shown, simply providing an interactive
environment for experimentation is not sufficient to result in timely learning. We have
since developed simple 'How to' wizards using the LML lesson specification language.
Students can ask for quick reviews of basic concepts or assistance in carrying out steps in
the use of the tool.

In addition, we have developed a simplified DAT analysis of the restaurants case for use
in the class on multi-attribute decision theory. This will make it possible for EDO School
instructors to introduce core concepts of the tool in advance of teaching about expected
value theory.

4.0 Rivets—Linux-based Authoring of Simulations and Instruction

Functioning versions of Rivets, a descendent of the classic RIDES program have been
developed for Linux and for the Macintosh under OS 10.3, with the optional X11 server
installed. The application tests as a well-behaved Linux program. It can open binary files
created with recent versions of RIDES and VIVIDS. Naturally, it can also save iRides
simulation files (of the ".jr" type) and iRides instruction specifications, in ".Iml" files.
Below is a picture of a Rivets simulation authoring session taken on the Macintosh
version of Rivets.

34

o

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

OO0 X! b -~ Scene Graphics ’ﬁm(:‘;mf’:”}m
— 0[] mag 1x XY: OFF Clean ® ! Simulate

View Edit Object Pen Paltem PenColor FillColor Font

Select
BRAKE PAD e

EXPANSION
CHAMBER

PUSH THE BRAKE
WITH THE FOOT
(DRAG THE SOLE)

A i
Figure 32. Macintosh Version of Rivets Application for Authoring Simulation-based Training

There are several limitations to the Macintosh version. The use of the Rivets clipboard
interferes with the use of the normal Macintosh OS inter-application clipboard. The
keyboard shortcuts violate Macintosh user interface standards. Other anomalies have also
been identified. At this time, there are no plans to upgrade the Macintosh version. In most
respects, it is as functional as the Linux version.

Having Rivets as an authoring tool option is potentially of use to authors who also have
iRides Author. Certain features (such as object alignment options) have not yet been
added to iRides Author. In addition, authoring certain types of procedural lessons is faster
in Rivets than in iRides Author. The latter application offers more advanced simulation
and instruction features, and it is a more stable program. Rivets, on the other hand, runs a
bit faster (perhaps because it is written in C++ rather than Java), and it is still better-
documented. Having both tools available makes it possible for an author to begin with
Rivets, where appropriate, and then transition to iRides Author in order to incorporate
more advanced features and to test in the iRides execution environment.

35

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

5.0 Summary

In the course of this ONR funded project, an advanced system for delivering authored
interactive graphical simulations and instructional vignettes, iRides, was completed,
tested and improved. IRides was developed with the ability to deliver simulation-based
instruction in three ways: as Java applications, as Java applets, and as Java Web Start
applications. The latter two options make it possible for these authored interactive
graphical simulations and training to be delivered over the Web or any similar network.
They thereby support advanced distance learning.

A new authoring tool, iRides Author, was developed for developing simulations and
instruction that iRides can deliver. This tool is a Java application that provides drawing
tools, behavior authoring and behavior debugging interfaces, and instruction authoring
and instruction debugging interfaces. The instruction approach supports the development
of novel instructional 'routines' that can be authored in XML and reused in multiple
contexts. The iRides instruction authoring system can be easily extended to provide
simple user interfaces that support the development of instruction using such instructional
templates.

The applet version of iRides can be delivered as a SCORM compliant shareable content
object (SCO). This feature is currently being exercised in a Marine Corps transition
project, in which an iRides SCO collaborates with the MarineNet Learning Management
System (LMS).

During the course of the development of these tools, two major efforts were undertaken
to produce advanced distance learning systems, built with the tools, for Navy and Marine
application. The first such effort was the marine rifle marksmanship project. Four training
modules were developed for teaching or refreshing concepts about rifle marksmanship,
with an emphasis on the appropriate use of the rifle marksman's Databook. These have
undergone experimental evaluation in several Marine learning environments, and the
Marine Corps decided to commit funds to the transition of a robust version of these
research products for use in Marine classes, beginning with the Rifle Marksmanship
Coaches Course.

The second major application of the iRides system was in the context of the Navy
Engineering Duty Officer (EDO) School. Here iRides was used to build an application
for modeling decisions where it is possible to estimate the probability and utility of the
possible outcomes of a series of such decisions. This application can be used to practice
this approach to complex decision-making. It can also provide instruction about its own
usage and about case studies depicted in its interface. The EDO School faculty has
incorporated this tool into portions of the EDO basic class.

An additional tool for authoring iRides simulations and training was produced during an
extension to the grant. This tool, Rivets, is a fast C++ program that has been compiled for
three different Unix-type operating systems: Linux, Silicon Graphics IRIX, and
Macintosh OS 10.3 or later with X11. It is now possible to author iRides simulations and

36

Award 0070-G-CH640 (N00014-02-1-0179) ONR FNC: ADDL—The KMT Project

training on a variety of platforms, including all the Windows platforms from Windows 98
to the present.

The flexible and open architecture of iRides makes it possible to employ this tool in
collaboration with other advanced training system components. Intelligent tutors, for
example, could make use of authored (maintainable) iRides simulations in advanced
training systems. Additional work remains to be done to make iRides a plug-in
component that can be used with a variety of advanced tutoring system approaches.

6.0 REFERENCES

Forbus, K. (1984). An interactive laboratory for teaching control system concepts. (Technical Report No.
5511). Cambridge, MA: Bolt Beranek and Newman Inc.

Hollan J., Hutchins E. and Weitzman L., (1984) Steamer: An Interactive Inspectable Simulation-Based Training
System, Al Magazine, 5(2), 15-2

Merrill, M. D., Jones, M. K., & Li, Z. (1992). Instructional transaction theory: Classes of transactions,
Educational Technology, 32(6), 12-26.

Munro, A. (1994). Authoring interactive graphical models. In T. de Jong, D. M. Towne, and H. Spada (Eds.),
The Use of Computer Models for Explication, Analysis and Experiential Learning. Springer Verlag.

Munro, A. (2003). Authoring simulation-centered learning environments with Rides and Vivids. In Murray, T.,
Blessing, S., and Ainsworth, S. (Eds.) Authoring Tools for Advanced Technology Learning Environments.
Dordrect, The Netherlands: Kluwer Academic Publishers.

Munro, A., Johnson, M. C,, Pizzini, Q. A., Surmon, D. S., Towne, D. M. and Wogulis, J. L. (1997). Authoring
Simulation-Centered Tutors with RIDES. International Journal of Artificial Intelligence in Education, 8,
284-316.

Munro, A. and Pizzini, Q. A. VIVIDS Reference Manual, Los Angeles: Behavioral Technology Laboratories,
University of Southern California, 1998.
Munro, A. Pizzini, Q. A., and Johnson, M. The iRides Simulation Language

Munro, A., Surmon, D., Johnson, M., Pizzini, Q., and Walker, J. An Open Architecture for Simulation-Centered
Tutors. In Lajoie, S. P. and Vivet, M., Artificial Intelligence in Education: Open Learning Environments:
New Computational Technologies to Support Learning, Exploration, and Collaboration. 1999,
Amsterdam: I0S Press, 360-367.

Munro, A., Surmon, D., and Pizzini, Q. (in preparation) Teaching procedural knowledge in distance learning
environments. In Perez, R. and O'Neil, H. (Eds.) Web based learning: Theory, research, and practice.
Inglewood, N.J.: Lawrence Erlbaum Associates.

Papert, S. (1980). Mindstorms: children computers, and powerful ideas. New York: Basic Books.

Rieber, L. P. (1992). Computer-Based Microworlds: A Bridge between Constructivism and Direct Instruction.
Educational Technology, Research, and Development, 40(1), 93-106.

Self, J. (1995). Problems with unguided learning. Proceedings of the International Conference on Computers in
Education. ICCE'95.

Shute, V.J. & Glaser, R. (1990). A large-scale evaluation of an intelligent discovery world: Smithtown.
Interactive Learning Environments, 1:55-77.

37

July 2004

Appendix A

The iRides
Simulation Language:

Authored Simulations for Distance Learning

Behavioral Technology Laboratories
University of Southern California
250 No. Harbor Drive, Suite 309
Redondo Beach, CA 90277

The iRides Simulation
Language:

Authored Simulations for Distance Learning

Allen Munro
Quentin A. Pizzini
Mark C. Johnson

Behavioral Technology Laboratories
University of Southern California
250 No. Harbor Drive, Suite 309
Redondo Beach, CA 90277

(310) 379-0844

http://btl.usc.edu/

Supported by Office of Naval Research Grant NO0014-02-1-0179 under UCLA
Sub-award No. 0070-G-CH640.

USC Principal Investigators: UCLA Principal Investigator
Allen Munro and Quentin A. Pizzini Eva Baker

ONR Program Management: UCLA Project Manager
Ray Perez William Bewley
Jan Dickieson
Wally Wullfeck

Program Development:
Mark C. Johnson
Josh Walker
Quentin A. Pizzini
David S. Surmon
Allen Munro

The iRides Simulation Language July 2004

Information in this document is subject to change without notice and does not
represent a commitment on the part of the University of Southern California.

The iRides Simulation Language: Authored Simulations for Distance Learning

© 2004 University of Southern California

The iRides Simulation Language July 2004
Contents
ACKNOWIEAGEMENTS .. iv
1 iRides—Delivering Simulation Based Distance Learning................ 1
2 How the iRides Simulator WOrkS............covceveeviencene e 4
3 Simulation Language FUNCHONSccceeeeeeeeeeseee e 11
4 Extending the Simulation Language..........cccceveeverueeerereeseeresrennenns 72
FUNCHIONS INAEX ..ciiieeieeiiie e e 80

fif

@

The iRides Simulation Language July 2004

Acknowledgements

Development of this technical document was supported by Office of Naval Research
Grant N00014-02-1-0179 to the Center for Research on Evaluation, Standards, and
Student Testing at the University of California Los Angeles, Eva Baker, Principal
Investigator. Researchers at Behavioral Technology Lab, University of Southern
California continued the development of iRides and wrote this documentation under
support from UCLA sub-award 0070-G-CH640 to USC. ONR scientific program
management for this work has been among the responsibilities of Dr. Ray Perez,
Ms. Jan Dickieson, and Dr. Wallace Wulfeck.

The research product described in this document underwent initial development
under the sponsorship of the Office of Naval Research under research grant
N00014-98-1-0510. Dr. Susan Chipman managed the ONR scientific program for
that project.

Donna Darling edited the text and prepared the index for this document.

iv

iRides—Delivering Simulation-based
Distance Learning

Ordinary computer-based learning and computer-based training systems commonly
have a page orientation to instructional presentation. A learner views a page of text
and/or graphics, answers questions, and is then presented with another page. In a
simulation-based learning system, in contrast, a learner views an interactive system
that represents many of the behaviors of the domain of knowledge that the learner
wants to become familiar with. In addition, the learner may also view or interact with
other interfaces, interfaces that present information about the simulated system, that
direct the learner to carry out actions in the simulation context, and that offer

guidance.

The iRides Simulation Language 1—Delivering Simulation-based Distance Learning July 2004

A live simulation permits arbitrary
sequences of actions by the user. In
moderately complex simulations, there
may be billions of possible action
sequences that users can follow in
using the simulation. Each action that L
a user takes must result in all the 5
changes that would be observed in a g
real device. Consider the aircraft AC i
Electric Power control panel shown at 4
the right. This panel is used to control 2
AC power systems on certain naval s
aircraft. ©

Figure 1. A Control Panel Simulation

The iRides Java based simulation engine provides a powerful and extensible
simulation system and executes a language that utilizes both one-way constraints
and conventional procedural constructs. Constraints are pieces of code that are
executed when values they refer to change. A typical example of a one-way
constraint language in common use today is found in the spreadsheet language
Excel. There, a cell's value may depend on an expression containing other cell
values, and will automatically be recomputed if any of those attributes change. In
two-way constraint languages, such as Prolog-lll or OZ, constraints are Dbi-
directional: A change to the left side of an equality will cause the right side to adjust;
while a change to the right side will cause the left side to be recomputed.

Java was chosen as the iRides implementation language because it is particularly
appropriate for supporting Internet and intranet delivery of powerful software
systems. (Java is not the language in which simulation authors develop particular
simulations, however. That language, the iRides simulation language, is related to C
and Java in its expression syntax. The language is interpreted by the iRides
simulation parser, which is described in some detail in chapters 2 and 4 of this
document.) The selection of Java for implementing iRides has supported the delivery
of distance learning based on authored simulations and authored lessons. It has
also made it possible for iRides to be delivered on multiple platforms. In addition to
working on all Windows operating systems from Windows 95 to Windows XP, iRides
also works on Linux systems and under Macintosh OS X.

The focus of this document is the iRides simulation language, not the tutorial
specification and control language of iRides, LML. Some of the concepts behind the
iRides tutorial system and LML (Lesson Markup Language) are described in these
on-line papers:
http://btl.usc.edu/newVivids/Carroll/index.html
http://btl.usc.edu/newVivids/OpenArc/OpenArc.html
A complete and up-to-date document on the LML approach to training and tutoring
will be developed in late 2004.

The iRides Simulation Language I—Delivering Simulation-based Distance Learning July 2004

One of the actions that an iRides tutorial typically specifies is the loading of one or
more authored interactive graphical simulations. (However, only one simulation at a
time may be active in iRides.) Simulation data in iRides is stored in two parts. One
part prescribes the appearance of the graphics, another part prescribes the
interactive behavior of the simulation. One reason for separating the two types of
simulation data is that this design will support the use of the same simulation engine
with different types of graphics. The current implementation of iRides makes use of
a 2D graphical specification that can be interpreted by the iRides 2D Model View
component. A future iRides implementation may support a 3D graphics specification
format, yet it will make use of the same behavioral specification format and the same
simulation engine. Our discussion of the iRides implementation begins with a
description of the simulation engine, with an emphasis on some of the innovative
characteristics that support a user-extensible simulation language.

Cost Effective Simulation Development

Most action centered training systems that have incorporated simulations have relied
on low level tools such as programming languages to develop both the tutors (or
coaches) and the simulations. Reliance on such low-level development techniques
naturally makes simulation development extremely expensive. An alternative
approach is to use an authoring system to produce simulations. If all the simulations
developed with a specialized authoring system automatically provide certain services
to the coaching component in an action centered learning environment, then those
services will not need to be re-implemented for each simulation developed.

There are a number of advantages to using an authoring system for producing
simulations for use with action centered coaching systems.
* Productivity is much greater than is the case with conventional

programming.

* The maintenance of complex graphical simulations is improved.

* The simulation player that delivers the authored simulation also provides
services to the tutor. It is not necessary to code these services anew for
each new simulation.

How the iRides Simulator Works

Constraint-based programming languages provide a number of benefits over
conventional declarative languages. Foremost among these is the elimination of
much of the burden on the programmer to determine the flow of control of program
execution. Constraints are pieces of code that are executed when values they refer
to change. In conventional programming languages, the programmer is responsible
for determining the order of execution of program statements. In a pure constraint
language, there is no “order” per se: The system of constraints represents a steady-
state model of the system being simulated. When that system is perturbed by
outside influences such as mouse or keyboard input, the constraint-firing
mechanism in the execution environment is responsible for determining when each
constraint must be evaluated and in what order. Constraint-based languages have a
number of advantages, including a reduction in the complexity of the programming
task, because flow of control is not ordinarily the responsibility of the constraint
author. A constraint-firing mechanism in the constraint execution environment is
responsible for determining when each constraint must be evaluated (executed).
Several constraint-based programming languages have been developed and
described (Leler, 1988; Munro, Johnson, Surmon, & Wogulis, 1993; Munro, 1994).

Constraint-based programming languages, like other programming languages, can
be extended through the definition of new functions and procedures. For example, if
a programming language does not have a square root function, a programmer could
write a new sqrt() function in the constraint language that returns the square root of
a numeric parameter. In the case of an interpreted constraint language, however,
such user-defined functions typically run much more slowly than the core 'native' set
of functions and procedures of the language. This is true because the body of a
user- defined function will itself be interpreted, while the native functions of the
language will be executed from a compiled representation.

The iRides Simulation Language 2—How the iRides Simulator Works July 2004

Note: When referring to user-defined functions (which may return values) and
procedures (which do not return values) this document will often use the term
function’ in preference to ‘function or procedure'. The innovations described here
apply equally to user defined functions and user defined procedures.

The structure of the iRides simulation language permits programmers to extend the
set of 'native’ functions of the iRides constraint-based language. This makes it
possible to develop faster, more efficient routines. These new user functions
become native parts of the language and are accessed in precisely the same way as
the standard set of functions. Unlike many interpreted simulation systems, there is
no execution penalty to this flexibility, since the user functions are compiled code,
not interpreted code.

iRides has several techniques that together support authored simulations with the
'native’ extensibility of constraint-based programming languages in the context of
program execution environments, such as Java, that support reflection. These
innovations are:
1 Controlling representational objects with an interpreted constraint
language,
2 A method for adding 'native functions' to such an interpreted constraint
language,
3 A technique for specifying the number and data types of the parameters
of a user-defined constraint language's functions and procedures, and
4 A method for specifying the external triggers of user-defined constraint
language functions and procedures.

Authored Constraints

Some systems for creating interactive graphical environments provide a constraint-
centered approach to authoring behavior. In such systems, rather than specify what
should take place when crucial events happen, an author specifies what
relationships are to endure among values in a system. An example of a constraint-
based environment with one-way propagation of effects is a spreadsheet authoring -
application, such as Excel. An author specifies that the value shown in cell D is the
sum of the values in cells A, B, and C. When any of these values is changed by a
user, the value of D is also changed. The author does not have to specify that the
event of a value change in A or B or C should invoke the computation of D.
Constraint-based languages are discussed extensively by Leler (1988). Examples of
constraint-based interactive graphical environments, include Sketchpad (Sutherland,
1963), Thinglab (Borning, 1979), and a spreadsheet-based graphics system by
Wilde and Lewis (1990).

In the iRides simulation system, objects have attributes. These attributes are used to
store values associated with the objects. Relational constraints can set the values of
these attributes.

An author can specify a constraint expression that determines the value of the
attribute. Consider an object, a ByPassValve whose angle of rotation is constrained

The iRides Simulation Language 2—How the iRides Simulator Works July 2004

to twice the rotation of another object, a SpringLever. Let this object be given the

following constraint for its Rotation attribute:
.SpringLever .Rotation * 2

This rule specifies that the Rotation of the ByPassValve will be twice the Rotation of
the SpringLever object.

Constraints are written as expressions. Whenever any value that is referred to in a
constraint expression changes, the expression is evaluated and a new value for the
attribute is determined. It is not necessary to explicitly state that the expression
above must be re-evaluated whenever the Rotation of the SpringLever changes.
Authors need not concern themselves with when a value needs to be recomputed if
that value is determined by a constraint.

The way that representations are controlled by constraints is illustrated in Figure 2. A
data stream (a file or other equivalent source of previously authored data) contains
specifications for attributes, constraints, initial values, and representations (e.g.,
graphics). As part of the parsing process, when each representation object is
created, it registers as a listener to those attributes that begin with the same name.
For example, a graphic named .pranel.ExtPwrSwitch. would register as a listener
for all the graphical attributes that can be associated with that representation. If this
representation is a group graphic, then it would register for the attributes associated
with group representations. In a particular implementation of the system described
here these group attributes could be (for example) Scale, Location, Visibility,
and RrRotation. In this example, the graphic for the external power switch would
register as a change listener for these attributes:

.Panel .ExtPwrSwitch.Scale

.Panel .ExtPwrSwitch.Location

.Panel .ExtPwrSwitch.Visibility

.Panel .ExtPwrSwitch.Rotation

The iRides Simulation Language 2—How the iRides Simulator Works July 2004

Attributes,
Constraints,
Values ...
Graphic data

Data specifying
appearances
and behavior of
objects

PARSER
TV

EACH GRAPHICAL OBJECT REGISTERS
AS A CHANGE LISTENER FOR
GRAPHICAL ATTRIBUTES WITH
CORRESPONDING NAMES

i

SIMULATION DATA (portion) REPRESENTATIONAL
DATA
ATTRIBUTES

NAME VALUE | CONSTRAINT | EVAL'D? ez GRAPHICS
..STATE

..ROTATION ppre—

...VOLTAGE

...IMPEDANCE

..LOCATION
\A LISTENERS

Figure 2. Representations Register as Change Listeners for Related Attributes

Whenever an attribute value changes, each listener (in the example in Figure 2,
each graphic that has registered with the attribute) is informed. The listener's
ValueChanged() method is called, and the new value is passed to the listener. The
representation stores the new data locally, and marks itself as being in need of
redrawing. The representation will mark itself as invalid. During the application's next
drawing event, the representation will redraw itself, if it is then exposed to view (that
is, if it is in the visible part of a window, etc.).

Propagating the Effects of a Value Change in a Network of Constraints

When the data that describes a set of constraints is parsed, the parser creates a list
of dependents for each attribute. These are the constraints that refer to that
attribute. Figure 3 sketches this process and the resulting simulation data. In this
figure, the first attribute is referred to in the constraint of the third attribute. The
fourth and fifth attributes have constraints that refer to the value of the last attribute.
They are therefore dependent on that value, and they appear in that attribute's list of
dependents.

The iRides Simulation Language

2—How the iRides Simulator Works

Attributes,
Constraints,
Values

PARSER

FOR EACH ATTRIBUTE IN A
CONSTRAINT, ADD THE CONSTRAINT
TO THEATTRIBUTE'S LIST OF
DEPENDENT CONSTRAINTS

SIMULATION DATA (portion)

ATTRIBUTES

NAME

VALUE |CONSTRAINT {EVAL'D?

| DEPENDENTS

L

| | l }\b DEPENDENTS

July 2004

Figure 3. The Dependent Constraints of Each Attribute Are Detected During Parsing.

Constraints frequently contain references to one or more attributes. For example, in
the simulation shown in Figure 1, there might be a State attribute that tracks the
generator power off light (an
.Panel .LftGenPwrOf fLight . State). Its constraint expression could be

status of the

if .PowerSys.LeftBusPower.State="on" and .Panel.LeftGenSwitch.State="on"

then "on"
else "off"

left

attribute

named

Naturally, the exact form of the constraint language syntax is incidental to the
system and methods described here. What is important is that the parser detects the

names of the attributes
.Panel .LftGenPwrOffLight .State
.PowerSys.LeftBusPower.State
.Panel.LeftGenSwitch.State

and adds a reference to the first one to the dependency lists of the second and third.

The attribute . Panel .LftGenPwrOf fLight . State is dependent on the other two.

While the simulation is running, attribute values may change for a variety of reasons.
A CurrentTime attribute, for example, might change virtually continuously. Other
attribute values change when a user takes action, such as clicking a mouse in an
object, or typing a value into a cell. When an attribute value does change, all the
constraints that refer to that attribute will need to be evaluated. The dependents list
is used to place those constraints on an activation stack. See Figure 4.

The iRides Simulation Language 2—How the iRides Simulator Works July 2004

PLACE ALL OF THE ATTRIBUTE'S
DEPENDENT CONSTRAINTS ON A STACK
OF ACTIVATED CONSTRAINTS

|

FOR EACH CONSTRAINT
ON THE ACTIVATION STACK

ALREADY
EVALUATED ON
THIS CYCLE?

EXECUTE THE CONSTRAINT
& MARK IT "EVALUATED"

DIFFERENT YES
VALUE”
NO
o g
ALL CONSTRAINTS
“EVALUATED™?
NO

NEXT CONSTRAINT

DOES IT HAVI
DEPENDENT
CONSTRAINTS?,

Figure 4. Propagating the Effects of an Attribute Value Change

When an attribute value changes, all of the constraints that are dependent on that
attribute are placed on a stack of activated constraints. These are the constraints
that currently need to be evaluated. For each constraint on the activation stack, the
constraint execution engine must first check to see whether it has already been
evaluated on this execution cycle. (Of course, the first time through, none of them
will have been evaluated.) If it has been, it is skipped. Otherwise, the constraint is
executed. When "native" functions are encountered in constraint executables, the
compute method of those functions is utilized to effectuate the tasks of those

functions.

The result of a constraint evaluation is examined to determine whether the value
computed is different from the attribute's previous value. If not, there is no need to
propagate the evaluation to its dependent attributes. If the new value is different,
then each of the dependent constraints of this attribute must be placed on the stack

of activated constraints.

This process continues until either the activation stack is empty or it has only
constraints that were already evaluated on this cycle. (Temporarily exiting the
constraint execution process makes it possible to carry out other tasks, such as
redrawing, even when authors have written defective sets of constraints that have
infinite loops.)

The iRides Simulation Language 2—How the iRides Simulator Works July 2004

What this Means for the Author

Because the iRides simulation engine is managing the flow of control of rule
activations, authors don't have to worry about when rules will be executed. If authors
will rely on the simulator to handle such mundane tasks, their job of specifying the
behavior of systems is much simplified. Authors should not misuse the Event
construct in iRides to build their own simulation loops, for example. Trust the iRides
simulator!

10

Simulation Language Functions

In a sense, there are two simulation languages in iRides. One is the language of
events, the other the language of constraints. Most authors create simulations using
primarily constraints. The event language can be seen as a superset of the
constraint language—a superset that makes use of statements as well as

expressions.

This chapter outlines how the statements and expressions of iRides rules are
executed when the simulation is running. It then describes the meanings of the
reserved words and symbols of the language.

Simulation in iRides
Simulation behavior is centered around attributes and their values. Graphical objects
have intrinsic attributes whose values govern their appearance. Authored attributes
may be created to compute and store intermediate results. These intermediate
values may ultimately be used to determine the values of intrinsic attributes. iRides
has two primary methods for specifying and changing the values of simulation
attributes: constraint and events.

Constraints. Each attribute can have a unique constraint, an expression which
specifies the value that the attribute should maintain. These are uni-directional
constraints. The simulation author need only specify what value an attribute should
take as a function of other attributes in the simulation. The simulator does the work
of maintaining attribute values and determining the order in which affected
constraints should be evaluated when the value of any attribute in the simulation
changes.

11

The iRides Simulation Language 3—Simulation Language Functions July 2004

Constraints are not the same as an assignment of value in a conventional
programming language because a constraint does not specify when an attribute is to
change value, but rather what value an attribute must have. As with spreadsheet
applications and experimental constraint languages, there is a great deal of power to
this approach since the author can specify simulation behavior as a set of
requirements to be met rather than having to describe the steps needed to meet
those requirements. However, there are cases where this approach does not provide
enough power, and events must be employed.

Events. Events are the other mechanism by which attribute values may be changed.
An event is defined to occur at an instant in simulation time and may directly affect
the value of more than one attribute. Events are intended to address two
fundamental drawbacks of using constraints to describe simulation behavior. First,
constraints specify relationships, but in some cases there should be a simulation
response to a single event in time such as a student mouse click or the moment
when the value of an attribute crosses a threshold. Second, an author has no control
over the order of evaluation of constraints. Sometimes control over order of
execution is required. For example, swapping two attributes values is procedural by
nature and cannot be expressed as a constraint.

Events in iRides address these two drawbacks of constraints. An event specifies a
trigger condition which determines when the event is to occur and an event body
that is the procedural definition of the event's actions.

Event triggers are specified as boolean expressions. The event is triggered only
when the trigger expression is evaluated and is found to be true. Any change in a
value referred to in a trigger expression will cause that expression to be re-
evaluated. If the trigger is found to be true, whether or not it was also true before,
then the event body will be executed.'

A Note on Thresholds. Sometimes it is desirable to have an event fire only when
the trigger becomes true. For example, it may be necessary for an attribute to be
assigned the time at which a simulated voltage dropped below some value. (If a
constraint were used to assign the value to the LowVoltageTime attribute, the
value would keep changing as the observed voltage took on a number of
different below-threshold values.) The correct way to design such a simulation is
to create a logical attribute (it might be called BelowThreshold) with a
constraint rule that returns true when the voltage is lower than the threshold
value and false otherwise. This BelowThreshold attribute can then be made
the trigger for an event that sets the LowVoltageTime attribute to
.8ys.clock.

Event actions are treated as taking place in sequence and instantaneously. (The
simulation clock is frozen during even execution, so no simulation time passes while
an event is executing.) Events can be used to enforce simultaneous attribute
changes. The effects of all the changes in an event body will not propagate through
the affected constraint rules until the entire event body has been performed. For

' Earlier editions of this document incorrectly described the role of event triggers. Thanks to
the late Jeff Rickel of Information Sciences Institute for pointing out the error.

12

The iRides Simulation Language 3—Simulation Language Functions July 2004

example, in an event that exchanges two attribute values one would not want effects
to propagate through the network of constraints before both attributes had taken on

their new values.

Because certain student actions, such as mouse button presses and the typing of
keys, are very frequently used to modify attributes, the language of constraints
permits event-like responses to these actions. The functions DownClick, UpClick,
and GetKey can be used in constraints to prescribe instantaneous effects.

Events serve the roles of functions and procedures in other programming
languages. An event can return a value, and events can take parameters. They can
also have local variables

Referring to Objects. In writing rules (constraint expressions, event delays, event
trigger conditions, or event bodies) it is often necessary to refer to simulation
objects. In order for the rule to be understood by the simulator, the objects must be
unambiguously named. The author assures this by typing not just the name of the
object, but the entire 'path name' of the object. A path name consists of the name of
the scene the object is in followed by the names of any grouped objects that contain
the object being specified in the rule. For example, a constraint expression might
take the form
if MouseIn(.TestStand.FrontPanel.Switches.MainPowerToggle.)

then 100

else 0
In this example, as long as the mouse is held down and is in some part of the
MainPowerToggle object, a value of 100 will be returned, otherwise a value of 0 will
be returned. The toggle, however, is part of the group object Switches, which in turn
is part of the group object FrontPanel, which is contained in the scene TestStand. In
order for this path name to be correct, the scene name must be preceded by '.', and
each object name must be followed by ".". '

There are times when the path name of an object does not need to be used. If a
constraint expression is being written for an attribute and the object being referred to
in that rule is the object that contains that attribute, the word self can be used,
instead of the path name for that object. In this case, the above rule would be written
more simply as
if MouseIn(self)
then 100
else 0
Similarly, a rule can refer to a subpart of the object whose attribute has the
constraint.
if MouseIn(UpperPart.)
then "increasing"”
else "decreasing"”
Note that subobjects are referred to without a preceding "." or any other part of the
path.

Referring to Attributes. Just as in the case of object references, for attribute
references it is often necessary to specify the entire path name of the attribute. For
example, the Rotation value of one object might be set by the Value attribute of
another by the following expression

13

The iRides Simulation Language 3—Simulation Language Functions July 2004

.FrontPanel .Meter.Value *10
In this case the Rotation attribute being referred to is that of the Meter object, which
is in the FrontPanel scene. Note that attribute names are not terminated with a '.".

There are times when the path name of an attribute does not need to be used. If the
Rotation and Value attributes both belong to the same object, it is sufficient to refer
simply to the Value attribute, without specifying the complete path name. In this
case, the above rule would be written more simply as

Value * 10
The attributes of subobjects also can be referred to without using full path names.
For example,

UpperPart .TimeTouched - Scene.StartTime

It is also possible to refer to an attribute of an instructional item. This is done using

the full path name of that attribute. However, the entire name must be prefixed with

'I:* (instructional item). For example a trigger condition in an event might be
I:.lessonl2.keyboard maximum.Score > 0

The trigger condition is satisfied if the Score attribute of the instructional item

keyboard_maximum of lesson12 is greater than 0.

The iRides Simulator. In order to implement the handling of events and
maintenance of constraints, the iRides simulator keeps an ordered list of current
constraints (and events) and executes each one in order. This list of to-be-evaluated
rules is called the current events list. Executing one rule on the list may cause others
to be added to the appropriate place in the list. This happens when the first rule
assigns a new value to an attribute that is used in another rule. The rule that uses
the newly changed attribute is automatically added to the current events list. Often,
there are many rules that refer to a changed attribute, and they must all go on the
current events list. The simulator keeps track of what order rules should go on the
list according to their dependencies. When an attribute that has an associated
graphic characteristic takes on a new value, then the graphics component of iRides
is informed that redrawing of that object will be required.

In addition to dealing with student actions, the simulator coordinates with the
instruction manager object. At the request of the instruction manager, the simulator
passes information back about certain student actions, starts and stops the
simulation process, and installs requested simulation states at the start of exercises.

Logical Functions
The logical functions and operators of iRides return the values true or false.

14

The iRides Simulation Language 3—Simulation Language Functions July 2004
<logical> == <logical>
<number> == <number>
<text> == <text>
<array> == <array>
<pattern> == <pattern>

<>

The = operator (the equality operator) returns true if the two arguments are equal
and false otherwise. Two arrays are considered equal if the arrays are of the same
length and each element in the first array is equal to the corresponding element in
the second array. For example, two colors are considered equal if they have the
same Red, Green, and Blue component values.

<logical> != <logical>

<number> != <number>

<text> l= <text>

<array> != <array>

<pattern> != <pattern>
The 1= operator (the inequality operator) returns false if the two arguments are
equal and true otherwise.

<logical> <> <logical>

<number> <> <number>

<text> <> <text>

<arrray> <> <array>

<pattern> <> <pattern>
The <> operator (the inequality operator) returns false if the two arguments are
equal and true otherwise.

<number> < <number>

<text> < <text>
The < operator returns true if the number on the left is smaller than the number on

the right. In the case of texts, "<" returns true if the text on the left would be sorted
alphabetically before the string on the right.

<number> > <number>

<text> > <text>
The > operator returns true if the item on the left is larger than the number on the
right. If text values are compared, the > operator returns true if the value on the left
would be alphabetically sorted after the item on the right.

15

The iRides Simulation Language 3—Simulation Language Functions July 2004

<number> <= <number>

<text> <= <text>
The <= operator returns true if the number on the left is smaller than or equal to
the number on the right. In the case of texts, it returns true if the texts are identical
or if the one on the left would be alphabetically sorted before the one on the right.

>=
<number> >= <number>
<text> >= <text>
The >= operator returns true if the number on the left is greater than or equal to
the number on the right. If text values are the arguments of this operator, it returns
true if the texts are equal or if the first text follows the second in an alphabetical
sort.
!
! <logical>
The ! operator returns true if its argument is false and f£alse if its argument is
true.
and
<logical> and <logical>
The and operator returns true if both arguments are true and false otherwise.
IRides uses short-circuit evaluations of conjoined arguments. If the first argument is
false, iRides need not bother evaluating the second, but can simply return £alse for
the conjunction.
AltIsDown
AltIsDown ()
The AltIsbown function returns true if the Alt key is being held down when a
key is pressed.
CtrlIsDown
CtrlIsDown () ,
The ctrlIsbown function returns true if the Ctrl key is being held down when a
key is pressed.
Defined

Defined (<text>)
The pefined function returns true if the attribute named in its text parameter
exists and has a valid value, otherwise it returns false.

16

The iRides Simulation Language 3—Simulation Language Functions July 2004

DeleteAtt
DeleteAtt (<text>)
The DeleteAtt function is used to delete the attribute named in its text parameter.
If the attribute name is not well-formed or the attribute does not exist, then the
function returns false.
Call this function only within an event.

DeleteObject
DeleteObject (<text>)
The argument must be a text value that specifies a full path to an object. The
function will delete the named object from the simulation. It returns true on
success, and false on failure. It can fail if the text argument does not refer to an
existing object, or if the object cannot be deleted, e.9. the .sys. scene object.
Authors are strongly urged to use this function only in events.

DownClick
DownClick (<object>)
The pDownClick function returns true if the user clicks the left mouse button down
in the object specified in the argument. This function and its system function
DownClick have a special status in iRides. When a call to bownClick is used as
the logical expression in an if.. clause, then the expression specified in the if..
clause is carried out as though it were the body of an event. This means that, in the
context of a DownClick function, an attribute expression can refer to its own
attribute in a way that would not ordinarily work in an attribute expression. For
example, in the context of a DownClick, an attribute’s rule may refer to the attribute
in a computation, as in this example:
if DownClick(self)

then ClickCount + 1

else ClickCount
The powncClick function should only appear in the top if-clause of a constraint rule.
Undefined results may be obtained if bownClick is nested within the then or else
clause of an if..then..else... construct.

IsNullObject
IsNullObject (<objectref>)

IsNullObject takes an object reference as parameter and returns true if that
object is a null object reference and false otherwise. A return value of false does not
necessarily mean the the object reference parameter is valid; it is only saying that it
is not the null reference. This function is useful in a situation like the following.
Suppose that you want to create a clone of some template, and then once you have
the clone you want to change some of its values.

$newobj := MakeClone(...):;

$newobj.Rotation := 45;
The problem is that the call to Make Clone might have been unsuccessful, so when
you try to set the Rotation value, the simulation will throw an exception. So, before
trying to set the Rotation, the author should first check to see if the clone was

17

The iRides Simulation Language 3—Simulation Language Functions July 2004

successfully created. MakeClone() return the created clone if it was successful, but it
return a null object reference if it was not. So the above code should be
$newobj := MakeClone(..);
if IsNullObj($newobj)
Print (“*some error message”);
Else
$newobj.Rotation := 45;

IsNumber
IsNumber (<text>)

IsNumber (<text>) takes a text parameter and returns true if the text value of the
parameter begins with a number. Examples of text strings that IsNumber returns
true for include “0”, “0.0123”, “723396", or “1.14e9”. Text parameters with such
values as “a29”, “Fred”, and “FF” will cause IsNumber to return £alse. Some text
values that are not normally thought of as numbers, but that do begin with numbers,
such as “0.1.2” or “1A12” will return true. The string can begin with leading spaces
before the first numerical digit in the text, and IsNumber will not mind. Thus
IsNumber(®* 6.3a”) will return true.

MakeTemplate
MakeTemplate (<object><text>)
The MakeTemplate function makes a template based on the <object> parameter.
The <text> parameter supplies the name for the template. If the template creation is
successful, true is returned, otherwise false is returned.

MetaIsDown
MetaIsDown ()
The MetaIsDown function returns true if the Meta key is being held down when a
key is pressed.

MiddleDownIn
MiddleDownIn (<object>)
The MiddleDbownIn function returns true if the user is pressing the middle mouse
button down while the mouse pointer is in the object specified in the <object>
argument. The value continues to return true so long as the middle mouse button
is held down, even if the mouse pointer moves out of the object. Unlike MouseIn,
MiddleDownIn does not return true if a user mouses down elsewhere and then
moves the mouse pointer into the object while holding the button down.

MouseDownlIn
MouseDownIn (<object>)
The MouseDownIn function returns true if the user is pressing the mouse button
down while the mouse pointer is in the object specified in the <object> argument.
The value continues to return true so long as the mouse button is held down, even
if the mouse pointer moves out of the object. Unlike MouseIn, MouseDownIn does

18

The iRides Simulation Language 3—Simulation Language Functions July 2004

not return true if a user mouses down elsewhere and then moves the mouse
pointer into the object while holding the button down.

MouselIn
MouseIn (<object>)
The MouseIn function returns true if the user is holding the mouse button down
while the mouse pointer is in the object specified in the <object> argument, and
otherwise it returns false. If a logical attribute has the rule expression
MouseIn(self), then the attribute will be true when ever the mouse is pointing in
the object and the left button is pressed. It is not necessary that the mouse was
pointing to the object when the button was first pressed.

MouseUpIn
MouseUpIn (<object>)
The MouseUpIn function returns true if the user releases the mouse while the
mouse is in the object. It does not matter whether the down click took place within
the object or somewhere else. If the mouse was not in the object upon the upclick,
false would be returned.

NewAttribute

NewAttribute (<text>, <text>, <value>)

This function allows an author to write events that create new attributes. The
function has three arguments. The first parameter must fully specify the name of the
parent object. The second parameter must provide the local name of the new
attribute. The third parameter, which may be of any type—logical, attribute, etc.--
provides the initial value of the new attribute. The value returned by this function is
true if the creation of the new attribute succeeds. If the first text argument (the
parent's name) is a bad reference, or if the second text argument (the attribute's
local name) is ill-formed—because the name has an illegal character or is already in
use--, or if the named attribute already exists, then the function returns false.

Call this function only within an event.

19

The iRides Simulation Language 3—Simulation Language Functions July 2004

NewColorAtt
NewColorAtt (<text>, <text>, <color>)

NewLogicalAtt
NewLogicalAtt (<text>, <text>, <logical>)

NewNumAtt
NewNumAtt (<text>, <text>, <number>)

NewPatternAtt
NewPatternAtt (<text>, <text>, <pattern>)

NewPointAtt
NewPointAtt (<text>, <text>, <point>)

NewTextAtt
NewTextAtt (<text>, <text>, <text>)

The previous six functions allow an author to write events that create new attributes.
Each of these functions has three arguments. The first parameter must fully specify
the name of the parent object. The second parameter must provide the local name
of the new attribute. The third parameter, which is of a type appropriate to the kind of
attribute being created, provides the initial value of the new attribute.

The generic form of these functions is

NewTypeAtt (<parentText>, <attNameText>, <value>)

The logical value returned by these functions is true if the creation of the new
attribute succeeds. If the first text argument (the parent's name) is a bad reference,
or if the second text argument (the attribute's local name) is ill-formed—because the
name has an illegal character or is already in use--, or if the named attribute already
exists, then the function returns £alse.

Call these functions only within an event.

NewVectorAtt
NewVectorAtt (<text>, <text>, <number>,<array_of_values>)

This function allows an author to write events that create new attributes. The
function has four arguments. The first parameter must fully specify the name of the
parent object. The second parameter must provide the local name of the new
attribute. The third parameter specifies how large the array in the attribute’s value
should be. The fourth parameter is an array of initial values for the attribute. The
value returned by this function is true if the creation of the new attribute succeeds.
If the first text argument (the parent's name) is a bad reference, or if the second text
argument (the attribute's local name) is ill-formed—because the name has an illegal
character or is already in use--, or if the named attribute already exists, then the
function returns false. If the <number> is less than one, the function returns
false.

Call this function only within an event.

20

The iRides Simulation Language 3—Simulation Language Functions July 2004

not
not <logical>
The not operator returns true if its argument is false and false if its argument is

true.

ObjectExists

ObjectExists (<text>)
ObjectExists tests that an object with a certain name is part of the simulation.
The text parameter of ObjectExists provides the full name of an object, including
its path. If the named object exists, the function objectExists returns true.
Otherwise the function returns £alse. Note that this function is not reevaluated
when a new object is created or deleted, or when object names are changed. A
logical constraint rule such as

ObjectExists (myTextAttribute)
is only evaluated when the text argument (myTextAttribute) changes. An
evaluation of ObjectExists can be forced by including a call to it in an event that
will be executed.

odd
odd (<number>)
The odd function returns true if the number that is its argument is an odd number.
If the number is even, the function returns false. 0dd should only be used with
integers (whole numbers). If odd is called on a non-integer, it returns false.

or
<logical> or <logical>
The oxr operator returns true if either argument is true (or both arguments are true)
and false otherwise. iRides uses short-circuit evaluations of disjunctive arguments.
If the first argument is true, iRides need not bother evaluating the second, but can
simply return true for the evaluation.

PostURL
PostURL (<text>)
This function opens a connection to a URL. lts parameter should be the fully
specified name of a URL. If opening the connection is successful, the value true is
returned, otherwise £alse is returned.
Call this function only within an event.

RightDownIn
RightDownIn (<object>)
The RightbownIn function returns true if the user is pressing the right mouse
button down while the mouse pointer is in the object specified in the <object>
argument. The value continues to return true so long as the right mouse button is
held down, even if the mouse pointer moves out of the object. Unlike MouseIn,

21

The iRides Simulation Language 3—Simulation Language Functions July 2004

RightDownIn does not return true if a user mouses down elsewhere and then
moves the mouse pointer into the object while holding the button down.

SaveFile

SaveFile (<text>)
The saveFile function saves the current simulation data to the file specified by the
parameter. That file name specified is first converted to a full path name, for
example, .\simulation2 might be converted to
C:\home\allsims\simulation2. If the save is successful, true is returned,
otherwise false is returned.
Call this function only within an event.

SetBody
SetBody (<text>,<text>)

This function replaces the text of an event's body and then accepts the new body. Its
first argument should be the name of an event; the second argument should be the
text of the rule body that will replace the existing body. If the named event does not
exist, or if the rule body expression is erroneous, then this function will return £alse.
If the body expression is successfully accepted, then setBody will return true.

Call this function only within an event.

SetRule
SetRule (<text>,<text>)

The setRule function replaces the text of a constraint rule and then accepts the
rule. The first argument should be the fully specified name of an attribute; the
second argument should be the text of a legal rule for that attribute. If the attribute
does not exist, or if the rule is of the wrong type or is erroneous, then the function
will return £alse. On success, it will return true.

Call this function only within an event. This function is now very rarely needed. Try to
find a way to avoid ‘self-modifying code'! '

SetTemplateRule
SetTemplateRule (<text>,<text,<text>)

The SetTemplateRule function replaces the text of a template rule and then
propagates that change through all existing clones of that template. Its first
argument should be the fully specified name of a template. The second argument is
the name of the attribute of that template whose rule is to be changed. The third
argument should be the text of a legal rule for the named attribute. If the template or
attribute does not exist, or if the rule is erroneous, then this function will return
false. On success, it will return true.

Call this function only within an event.

22

The iRides Simulation Language 3—Simulation Language Functions July 2004

SetTest
SetTest (<text>,<text>)

The setTest function replaces the text of an event's trigger condition and then
accepts the new event trigger expression. Its first argument should be the name of
an event; the second argument should be the text of a trigger condition. If the
named event does not exist, or if the delay expression is erroneous or is not a logical
expression, then this function will return £alse. If the trigger condition expression is
successfully accepted, then SetTest will return true.

Call this function only within an event.

ShiftIsDown
ShiftIsbown ()
The shiftIsbown function returns true if the shift key is being held down.

SoundIsPlaying
SoundIsPlaying ();
This function returns a logical value (true or £alse). If a sound is still being played
as a result of a call to PlaySound, this function returns true. Authors can use this
function to make sure that a simulation does not start playing a new sound before an
old sound is finished.

TextEqQ
TextEqQ (<text>,<text>)
This function returns a logical value of true whenever the two text arguments are
equal, ignoring case. (The standard = operator returns true only if the two text

arguments are exactly equal.)
TextEqgq ("PhanTasmania", "PhantasMania") returns true.

23

The iRides Simulation Language 3—Simulation Language Functions July 2004

TypeColor
TypeColor (<text>)

TypeLogical
TypelLogical (<text>)

TypeNum
TypeNum (<text>)

TypePattern
TvpePattern (<text>

TypePoint
TypePoint (<text>))

TypeText
TypeText (<text>)

These six functions can be used to test the type of an attribute. If authors write
events that change constraint rules and events, then the authors should check on
the types of the attributes that are being used, so that their application won't write
erroneous rules that will cause the simulator to stop. In each case, a text parameter
provides the full name (including the complete path) of an attribute that should be
tested. If the attribute named by the text argument to the function exists and is of the
specified type, then the function returns true. An unknown attribute returns false.

UpClick
UpClick (<object>)
The upClick function returns true if the user releases the pressed left mouse
button while the mouse pointer is in the object specified. As with the bownClick
function, it is possible to use a reference to the attribute in a computation that is
triggered by an upclick event.
if UpClick(self)

then UpCount + 1

else UpCount
The UpClick function should only appear in the top if-clause of a constraint rule.
Undefined results may be obtained if upClick is nested within the then or else
clause of an if..then..else... construct.

VideoIsPlayving
VideoIsPlaying ();
This function returns a logical value (true or false). If a video is still being played
as a result of a call to Play_ MPEG, this function returns true. Authors can use this
function to make sure that a simulation does not start playing a new video before an
old one is finished.

24

The iRides Simulation Language 3—Simulation Language Functions July 2004

Number Functions
The number functions and operators of iRides return numerical values. Number
expressions can contain both numeric attributes (e.g., .S.Handle.Rotation) and
numeric literals like 0, 1, 76933.8846, and 1.5E+13, as well as functions that

return numeric values
Predefined Numeric Constants

Several numeric constants have been predefined in iRides

[blue]

<color> [blue]
[green]

<color> [green]
[red]

<color> [red]
[red], [green], and [blue] are operators for providing access to the number

components of color values. For example

.PanelScn.WarningLight .FillColor[red]
returns the value of the first number component of the fill color attribute of the
WarningLight object on the scene PanelScn.

[x]
<point> [x]
[y]
<point> [y]
[x] and [y] can be used to access the X and Y values of a two-dimensional point

attribute. For example
.PanelScn.PressureIndicator.Locationl[y]

returns the Y value of the location of the Pressurelndicator object on the scene
PanelScn.

Numeric Operators and Functions

<number> + <number>
The + operator returns the sum of its two arguments.

<number> - <number>
The - operator returns the difference of its two arguments, that is, the first argument
minus the second.

25

The iRides Simulation Language 3—Simulation Language Functions July 2004

-<number>
The - operator, unary minus, returns the negative of its single argument.

<number> * <number>
The * operator returns the product of its two arguments.

<number> / <number>
The / operator returns the quotient of the first argument divided by the second
argument.

abs
abs (<number>)
The abs function returns the absolute value of the number that is its argument. For
example
abs (-1.293)
returns
1.293

acos
acos (<number>)
This is the arccosine function. Given a number parameter, it returns a number that
can be interpreted as degrees of an angle.

arctan
' arctan (<number>)
This is the arctangent function. Given a number, it returns a number that can be
interpreted as degrees of an angle.

arctan2
arctan2 (<numberY>, <numberX>)
This function returns the arctangent of the ratio of y/x. It returns a number that can
be interpreted as degrees of an angle. One can interpret this angle as the angle of
rotation from the horizontal of the line segment that passes from the point [0, O] in
the local coordinate system through the point [numberX, numberY]. arctan2 is
undefined if it is passed the values (0, 0). If this happens during a simulation, an
error message appears. This function returns 0 for all values of numberX when
numberY = 0.

26

The iRides Simulation Language 3—Simulation Language Functions July 2004

asin
asin (<number>)
This is the arcsine function. Given a number, it returns a number that can be
interpreted as degrees of an angle.

cos
cos (<number>)
This is the trigonometric cosine function. The number argument is expressed in
degrees.

Day
Day (<number>)
This function converts a number that expresses a date and time in arbitrary internal
clock format into a number that represents the day of the month. pay will have a
value between 1 and 31. A common way to get the current day is to use Day in
conjunction with the iRides function Now () :
Day (Now())

exp
exp (<number>)
This function returns the value of e (2.7182) raised to the power specified by the
number.

Hour
Hour (<number>)

This function converts a number that expresses a date and time in arbitrary internal
clock format into a number that represents the hour of the day. Hour will have a
value between 0 and 23. 0 is the hour that begins at midnight; 13 is 1 PM. A
common way to get the current hour is to use Hour in conjunction with the iRides
function Now ():

Hour (Now ())

Len
Len (<text>)
The Len function can be used to find the length of a string. It takes a string as an
argument and returns the number of characters in the string.

Length
Length (<array>)
The Length function can be used to find the length of an array. It takes an array as
argument and returns the length of that array. If the parameter passed in is not an
array, the value 0 is returned.

27

The iRides Simulation Language 3—Simulation Language Functions July 2004

log
log (<number>)
The log function is the natural logarithm. It returns the log base e (2.7182) of the
number specified in the parameter. '

logl0
logl0 (<number>)
This function returns the log base 10 of the number specified in the parameter.

max
max (<number>, <number>, <number>, ...)
This function returns the largest of the two or more numbers that are its parameters.
max is sometimes used together with min to ensure that an attribute’s value is within

a specified range, as in this construct:
min (MyMaxNum (max (MyMinNum, SourceAttibute)))

min
min (<number>, <number>, <number>, ...)
This function returns the smallest of the two or more numbers that are its
parameters. See also max, just above.

Minute
Minute (<number>)
This function converts a number that expresses time in arbitrary internal clock format
into a number that represents the minute of the hour. Minute will have a value
between 0 and 59. A common way to get the current minute is to use Minute in
conjunction with the iRides function Now():
Minute (Now())

mod
<number> mod <number>
The mod operator returns the remainder that results when the integer (whole
number) portion of the first number is divided by the integer portion of the second
number. 17 mod 5 is 2, the remainder when 17 is divided by 5. mod always returns
an integer.

The mod operator is often used with the . sys.Clock attribute to produce numerical

whole number values in a range. The expression
(.sys.Clock * NumsPerSec) mod (MaxCount + 1)

will produce NumsPerSec numbers every second. The numbers will go from O to
MaxCount and will then start over again.

28

The iRides Simulation Language 3—Simulation Language Functions July 2004

* and / have higher precedence than + and -. This means that, other things being
equal, * and 7 will be evaluated before + and - in an expression. For example

2 +3 *2
evaluates to 8, because the multiply operation is carried out before the addition.
Parentheses can be used to enforce a preferred order of evaluation for an
expression. For example,

(2 + 3) * 2
evaluates to 10.

Among the six operators presented above, this is the order of precedence
- (unary minus, highest precedence)
mod
* and /
+ and - (addition and subtraction, lowest precedence)

Month
Month (<number>)
The Month function converts a number that expresses time in arbitrary internal clock
format into a number that represents the month of the year. Month will have a value
between 1 and 12. A common way to get the current month is to use Month in
conjunction with the iRides function Now ():
Month (Now())

Now
Now ()

The Now function produces a number that expresses the total number of seconds
that have elapsed since midnight GMT January 1, 1970. The accuracy value of the
function depends on the accuracy of the real-time clock in the computer. The raw
number returned is not very easy to use as a date and time. A readable date/time
string is created by using the text function Date with Now ().

Date (Now())
which produces strings such as

"Wed Dec 16 18:02:16 1993"

One can also use the numeric time functions of the iRides language to extract the
current year, month, day of the month, hour of the day, and so on. Here is a
synopsis of these time functions, together with the range of values each one can
produce when used with Now () as its argument:

Second 0-59

Minute 0-59

Hour 0-23

Weekday 1-7 where 1 is Sunday
Day 1-31

Month 1-12

Year e.g., 1993

29

The iRides Simulation Language 3—Simulation Language Functions July 2004

NumAttributes
NumAttributes (<text>)
The NumAttributes function returns the number of attributes of the object named
by its text argument. If the object name specified is invalid, NumAttributes returns
-1.
Call this function only within an event.

NumFields
NumFields (<text>)
This function returns the number of white-space-delimited fields in its string
argument.

NumObjects
NumObjects (<text>)
The NumObjects function returns the number of subobjects for the given path
specified by the text argument. The same function can be used to find the number of
scenes in a simulation, the number of top objects on a scene, and the number of
subobjects within any group object. Here are some examples:

NumObjects(".") returns the number of scenes in the simulation
NumObjects(".Scene2.") returns the number of top-level objects in
Scene2

NumObjects(".Scene2.Bob.") returns the number of component objects in the

Bob object.
When NumObjects is called on an object that contains both promoted, named
iRides objects and pure graphics, only the iRides objects are included in the count.
If the object specified by the text parameter does not exist, NumObjects returns -1.
Call this function only within an event.

NumRecords
' NumRecords (<text>);
The function NumRecords is a function of type number that returns a count of the
records in the file. If the file doesn't exist or isn't open for reading, NumRecords will
return -1.

ord
Oord (<text>);
The function oxd is a function of type number that returns the ASCII decimal value

of the first letter of the text. For example,
Ord(“*Now is the time.”)

will return 78, the ASCII decimal value of ‘N'.

PointToPercent
PointToPercent (<object>, <point>)
The PointToPercent function returns a number between 0 and 1. Given an object
and a point that lies on the edge of the object, it returns a number that specifies at

30

The iRides Simulation Language 3—Simulation Language Functions July 2004

what proportion of the object’s edge length the point is located. Slider controls often
have an output or control attribute with a value that is determined by a rule like this:
PointToPercent (Track., Slider.Location)

If the specified point does not actually lie on the edge of the specified object, then
the function will find the point on the edge of the object that is closest to the point
parameter.

pow
pow (<number>, <number>)

The pow function returns the value of the first argument raised to the power of the
second argument. If the first argument is zero, the second argument must be
positive. If the first argument is negative, then the second argument must be an
integer. (Negative numbers can only be raised by whole numbers.) If pow is called
with an illegal parameter value, the simulation is stopped, the offending rule data
view (attribute data view or event data view) is opened, and an error dialog opens
that informs the user "ERROR: parameter out of range. The simulator has been
paused."

random
random (<number>)
The random function returns a random number between 0 and one less than the
number specified in the parameter. For example, random(100) returns integer
numbers between 0 and 99. To produce random values between 0 and 1, one could
use an expression like this:
(random (1000)) / 1000

A constraint rule with this form will fire continuously. In many cases, calls to the
random function are more appropriately found in events or event-like constraints
(those that are triggered by a call to bownClick() or upClick (), for example).

round
round (<number>)
The round function returns a rounded (integer, whole number) number based on
the number parameter. Authors must keep in mind the difference between the
round and trunc functions.
round(0.5) =1
trunc(0.5) =0 (indeed, trunc(0.99999) =0)

Search
Search (<text>, <subtext>)
This function takes two text arguments and returns the position of the second
argument in the first. The return value is a number. If the subtext is not found the
function returns 0. The first position is designated to be 1. The search function is

case sensitive.

31

The iRides Simulation Language 3—Simulation Language Functions July 2004

Second
Second (<number>) ,
This function converts a number that expresses time in internal clock format into a
number that represents the second of the minute. Second will have a value between
0 and 59. A common way to get the current second is to use Second in conjunction
with the iRides function Now():
Second (Now())

sin
sin (<number>)
This trigonometric function produces the sine of the angle expressed in degrees in
the <number> parameter.

sqrt
sqgrt (<number>)
The sqrt function returns the square root of the <number> parameter.

StopTimer
StopTimer();
StopTimer (<number>) ;

This event statement stops a timer. A possible use for this is to measure how much
time passes before something occurs. It should be used in conjunction with
StartTimer, which is described later in this document. There are 10 different
timers available, numbered from 0 to 9. You can specify which timer to use by
specifying a value for <number>; if you don’t specify one, the default value of 0 will
be used. An example of the use of StartTimer and StopTimer in an event body is

Rotation := 0;

StartTimer(3):

while (Rotation < 90)

Rotation := Rotation + 2;

Print (“Rotation completed in “,StopTimer(3),” seconds.”);
If startTimer is called with some parameter, say ‘3’, and then it is called again
with the same parameter, it restarts with a time value of 0. So a subsequent call of
StopTimer with that parameter will return the time elapsed from the more recent
StartTimer call.
Call this function only within an event.

tan
tan (<number>)
This trigonometric function produces the tangent of the angle expressed in degrees
in the <number> parameter.

32

The iRides Simulation Language 3—Simulation Language Functions July 2004

ToNumber

ToNumber (<text>)
ToNumber (<text>) takes a text parameter and returns the number value that the
text presents. That is, the function ToNumber (“12.17) returns the number 12.1. If
the argument to ToNumber is not a number as defined by the IsNumber function,
then the function returns the number 0. In most cases, authors should provide error
handling by using the IsNumber function before relying on ToNumber. That is,
authors should write a rule for a number attribute (here, one called Numvalue) that
includes a construct like this:

if IsNumber(.Scn.Obj.NumText)
then ToNumber(.Scn.Obj.NumText)
else NumValue

If ToNumber is passed a text value that begins with a number (or spaces followed by
a number) but ends with non-numeric characters, ToNumber will convert the first
part to a number and ignore the rest. For example ToNumber (™ 6.3a”) will
return 6.3.

TrackMouseAngle
TrackMouseAngle (<point>, <number>)
It is often desirable to create an iRides object that can be rotated about its origin by
a user. The function TrackMouseAngle tracks the motion of the mouse about the
origin of an object when the mouse button is pressed. The <number> attribute is
used to determine what should be considered the starting rotation when the mouse
goes down in the object. The most common use of TrackMouseangle is to
determine the Rotation attribute of an object with a rule like this
TrackMouseAngle (Location, Rotation)
This rule takes the old Rotation value as the starting point for the new angle-

tracking operation.

trunc
trunc (<number>)
The trunc function returns a truncated (integer, whole number) number based on
the <number> parameter. Unlike the round function, trunc will return only the
whole number part of the <number> parameter, no matter how close to 1 the
fractional part is.

Weekday
Weekday (<number>)
This function converts a number that expresses a date and time in an internal clock
format into a number that represents the day of the week. weekday will have a
value between 1 and 7. Sunday is 1, Saturday is 7. A common way to get the current
day is to use Weekday in conjunction with the iRides function Now ():
Weekday (Now())

33

The iRides Simulation Language 3—Simulation Language Functions July 2004

Year
Year (<number>)
This function converts a number that expresses a date and time in an internal format
into the current year. A common way to get the current year is to use Year in
conjunction with the iRides function Now():
Year (Now())

Text Functions

These functions return values of type text.

concat
concat (<text>, <text>, <text>, ...)
concat is used to combine text values into new text values. All the text parameters
are combined in the order in which they appear in the parameter list to produce a
new text value.

Date
Date (<number>)
This function converts a number that expresses a date in internal clock format into
text data—a string of characters. A common use of this function is in conjunction
with the function Now(). See the discussion of Now(), in the number functions
section. The string produced depends not only on the value of the function's number
parameter, but also on what time zone the computer is in.

The strings produced by Date are always of the same length—24 characters—and
each part of the string always conveys the same type of information.
The first three characters give a day of the week ("Mon", "Tue", and so on).
Character 4 is a space. -
Characters 5-7 give a month ("Jan”, "Feb", ... "Dec")
Character 8 is a space.
Characters 9 and 10 give the day of the month (" 1", " 2", ... "31").
Note that for the first 9 days of the month, character 9 is a space.
Character 11 is a space.
The eight characters 12-19 convey the time in 'military’ or '24-hour' time.
(for example "23:02:40")
Character 20 is a space.
Characters 21-24 give the year. The value of Date(0) is
"Wed Dec 31 16:00:00 1969". (In the Pacific Standard time zone. In
England, the string would be "Thu Jan 1 00:00:00 1970".)
If the numeric argument of the pate function is less than 0, then the string
that is returned will describe a time before the time that pate returns for 0.

34

The iRides Simulation Language 3—Simulation Language Functions July 2004

format
format (<format_text>, <any expression>, <any expression>, ...)
format is a workhorse function for producing text values in iRides. The first
parameter is a string. Each instance of the character “%” in this format string will be
replaced with a text representation of the corresponding expression in the list of
expressions. That is, the first “%” will be replaced with a textual representation of the
second parameter (the first expression following the format text). The second “%” in
the format text will be replaced by a text version of the third parameter.

Here is a simple example of the use of format:
format (“Output Voltage is %”, .Scn.PwrSupply.OutputVolts)
If this rule is used to control a text object’'s TextValue, then the object might look like
this:
Output Voltage is 28

Any expression type can be formatted using format. If a text object is given this

rule for its TextValue
format (“Location is %;\nRotation is %;\n Color is %~”,

Location, Rotation, TextColor)
then the screen display of the object would look like this:
Location is [171.5, 266];
Rotation is O;
Coloris [0, 0, 0]

The format function interprets the special character combination “\n” in a special
way to produce a new line. An author can use “\n” to create multiline text items. (The
value cell of an attribute with such a rule—in either the object data view or the
attribute data view—uwill show only the first line of the text. The entire text value will
be used by a text object’'s TextValue attribute, however.)

To print a backslash character “\” in a formatted string, one must use “\V’, which will
print as a single backslash. To print a "%" in a string, use "\%".

FormatNumber
FormatNumber (<text>, <text>, <logical>, <number>, <number>, <number>)

FormatNumber takes a number parameter—the last of the six parameters—and
returns a text value. In this respect, it is not unlike the iRides format function. What
is different about this function is that it has five other parameters that determine how
the number will be formatted when it is converted to text.

* The first text parameter is flag text, a sequence of flag characters. This
sequence can consist of one or more of the following three characters: “-” “+”
“”. These characters can appear in any order. These are their meanings:

- Left justify the result. If this character does not appear in the first
argument, right justify the result. If “-” is not present in the flag, then
the text is right justified and padded on the left with zeros or blanks.

+ Begin every result with either “-” or “+”, depending on the value of the

result.
The space symbol (“ ”) specifies that positive values should begin

35

The iRides Simulation Language 3—Simulation Language Functions July 2004

with a blank instead of a “+”; negative values will still begin with “”.
if there is no space and no “+”, then positive numbers will not be
preceded by either a space (unless they are right justified) or
by a plus sign. See the examples in the table below.

The second parameter, type text, can be “€” or “E” or “f". The “” parameter
means that the conversion will be into floating point format; “e” or “E” means
that the conversion is into exponential format (sometimes called ‘scientific
notation’). The floating point number 0.0021 appears as “2.1e-3" if the “¢”
exponential format is chosen. (It appears as “2.1E-3” if the “E” exponential
format is chosen.) In exponential format, only one digit precedes the decimal
point.

The third parameter, the logical pad logical, determines whether the number
will be padded with leading zeros. The value true means that as many
zeros as are required to pad the text out to the number of characters
specified by the width parameter.

The fourth parameter, the number value width, specifies the minimum
number of characters that the text is to contain.

The fifth parameter is a number that specifies the desired precision of the
converted number—how many characters should appear to the right of the
decimal point.

The sixth parameter is the number that is to be converted.

Any of the parameters for FormatNumber can be attribute references or any other
legal expression of the appropriate type.

The table below presents a few of the possible specifications for printing numbers.

FormatNumber statement (where TheNum is 12.3333) Result:
FormatNumber (“-#, “£f”, false, 8, 2, TheNum) “12.33 w
FormatNumber (“- ”, “f”, false, 8, 2, TheNum) 12,33 ™
FormatNumber (“”, “f”, false, 8, 2, TheNum) w 12.33”
FormatNumber (“+”, “f”, false, 8, 2, TheNum) “ +12.33”7
FormatNumber (“-+7, “f£”, false, 8, 2, TheNum) “412,33 0™
FormatNumber (“”, “f”, true, 8, 2, TheNum) “00012.33”
FormatNumber (™ 7, “f”, true, 8, 2, TheNum) “ 0012.33”
FormatNumber (“”, “e”, false, 9, 2, TheNum) “ 1.23e+01”
FormatNumber (“-”, “E”, false, 9, 2, TheNum) “1.23E+01 ™
GetField

GetField (<text>, <number>)

This function returns a text value that is the ith space-delimited field specified by the
number argument /. If there is an error condition (e.g., the text argument is empty, or
there is no Jith field), then the function returns ", the empty text string.

36

The iRides Simulation Language 3—Simulation Language Functions July 2004

GetFullName
GetFullName (<reference>)
This function takes either an attribute or an object reference as an argument.
GetFullName returns the referenced item's full path name. For example,
GetFullName(.sys.clock) returns ".sys.clock'. Warning: rules using this
function will NOT automatically fire when the name of the referenced item changes.

GetKey
GetKey ()
This function returns a one-character string just when a key is pressed and any
scene window has the focus. This rule for the TextValue of an object will make it
display what is typed from the keyboard:
if DownClick(self)

then nw

else concat (TextValue, GetKey())
This rule also lets the user clear the text of the object by clicking on it.

GetKey works something like DownClick and UpClick in that it has an
instantaneous effect only. In many ways, a constraint rule with GetKey is like an
event.

GetName
GetName (<reference>)
This function takes either an attribute or an object reference as an argument.
GetName returns a text value with the referenced item's local name. For example,
GetName (.sys.clock) returns "clock". Warning: rules using this function will NOT
automatically fire when the name of the referenced item changes.

GetNthRecord
GetNthRecord (<filename>, <record number>) ;
This event statement returns the Nth line from a file. The file must have already
been opened with the £open function. If the GetNthRecord () function is called on
a file that has not been opened, then the string "** NOT OPEN **" s returned. If
the line does not exist in the file, "** EOF **" is returned.

GetRule
GetRule (<text>)
This function returns the text of a constraint rule. Its parameter should be the fully
specified name of an attribute. If the parameter does not name a real attribute, the

function returns the empty text value, ™.
Call this function only within an event.

37

The iRides Simulation Language 3—Simulation Language Functions July 2004

GetURL
GetURL (<text>)
This function returns the text of a URL. Its parameter should be the fully specified
name of a URL. If the parameter does not name a real URL, the function returns the
empty text value, "". If the URL does not exist, an error will result.
Call this function only within an event.

LCase
LCase (text)
This function returns a text value that is the lower case conversion of the text
argument that is passed to it. The alphabetic letters in the result of a call to LCase
are always all in lower case.

MouseIsIn
MouseIsIn()
MouseIsIn() returns a text value that is the name of the object the mouse is in
while the mouse is down. If the mouse is not down then this returns the empty text

value, "".

NthAttribute
NthAttribute (<text>)
This function returns the name of the Nth attribute of the object specified by the text
parameter. If the object name specified by the text argument is invalid, or if the
number is less than 0 or not an integer or larger than the number of attributes of the
object, then the Nthattribute function returns the empty text value, "".
Call this function only within an event.

NthObject
NthObject (<text>) :
This function returns the name of the Nth subobject of the object specified by the
text parameter. If the path name specified by the text argument is invalid, or if the
number is less than O or not an integer or larger than the number of subobjects, then
the Nthobject function returns the empty text, "".
Call this function only within an event.

ParentPath
ParentPath (<text>)
ParentPath takes a text argument that fully specifies an object or an attribute (for
example, ".sys.clock" or ".sys.Fred.Head."). It returns the path part of the full text
specification; that is, it returns all the text up to the leaf object or attribute specified.
Here are some examples of calls of ParentPath with what they will return.

ParentPath(".sys.clock") ".sys."
ParentPath(".sys.Fred.Head") ",.sys.Fred."
ParentPath(".sys.Fred.Head.Rotation") ".sys.Fred.Head."
ParentPath(".sys.") w,m

38

The iRides Simulation Language 3—Simulation Language Functions July 2004

ParentPath(".") "o
ParentPath("Fred") wn

Note that if the function is called with a text argument that is not a well-formed iRides
name (the "Fred" example), then the ParentPath function will return the empty text
string, "". Note, too, that ParentPath does not actually check that there is any such
object or attribute in the simulation. All it does is strip off the last name in a well-
formed fully specified iRides object or attribute name.

Print
Print (<any expression>) ;

The Print function will produce output to the term window. The expression is
optional; if used, it can be any expression that returns a value.

Print () ; will just output a blank line to the terminal.

Print (4 * 3); will output “12”.

Print(“Scale “,[2,2],” Rotation “,Rotation * 4); If the initial
value of Rotation was 11, this will output

Scale [2,2] Rotation 44
What is especially interesting about this function, however, is the way it returns a
value; it returns the value of the last expression in the parameter list. In this case it
would return 44. The function can appear within an event or as an attribute relation.
For example, if it was entered as the relation of some attribute, call it NewvValue,
then when Rotation changed, the output to the term window would occur and the
value of Newvalue would be changed to 44. This is a very useful debugging tool. It
is defined in such a way that it always returns the value, but it does not always
produce output. If the property btl.sim.debuglevel, in the file btl.prp, is given
a value less than 15, the output will occur; if the value is 15 or more, there will be no
output.

readline
readline (<filename>)
This expression will read the next line from the named file if the file is open for
reading. If the file is not open for reading, then the function will return the string v **
FILE NOT OPEN **# The string returned does not include the newline character
found in the file. If no more lines are available in the file, then the function returns
vx*x EOF **»_ A well-designed event that reads from a file should check for these

values.

SubText
SubText (<text>, <start_number>, <length_number>)

SubText is used to access a portion of a text value. It returns a value that is the
portion of the text parameter (the first argument of subText) that begins with the
<start-number> character in the original string and extends for <length_number>
characters.

SubText can be used with the Date function to extract parts of the constant-format
date string. For example,

39

The iRides Simulation Language 3—Simulation Language Functions July 2004

SubText ((Date(Now()), 1, 3)
will return the first three characters of the date text, which will always be the day of
the week, e.g., Wed.

SubText ((Date(Now()), 5, 6)
will return characters 5 through 11, which will show the month and date, e.g., Dec
16.

UCase
UCase (text)
This function returns a text value that is the upper case conversion of the text
argument that is passed to it. The alphabetic letters in the result of ucase are all

capitalized.

Color Functions

Each of the following functions returns a value that is an array of three numbers.

HSVtOoRGB
HSVtoRGB (<hue>, <sat>, <value>)

RGBtoHSV
RGBtoHSV (<red>, <green>, <blue>)

While the RGB (Red-Green-Blue) color model is used underlyingly in iRides, it is
sometimes useful to be able to express colors in terms of their hue, saturation, and
value (intensity). This color model is called the HSV model. The HSV model is a
more useful way of computing changes in shading (using saturation and value while
holding hue constant) than is the RGB model. The functions HSVtoRGB and
RGBtoHSV translate between these two color models.

MakeColor
MakeColor (<text>)
MakeColor is used to create a color value, given the name of a color. The X11
window system provides a set of standard color names, including “Dodger Blue”,
“Indian Red”, and “Light Slate Gray” as well as such conventional colors as “Blue”
and “Yellow”. Which color names are supported and what those colors mean can
vary among different Unix computers, depending on the X implementation and local
color data.

MakeColor
MakeColor (<red_number>, <green_number>, <blue_number>)
MakeColor is used to create a color value, given numerical specifications for the
red, green, and blue components of the color. Each of these numbers should be a
value between 0 and 1.

40

The iRides Simulation Language 3—Simulation Language Functions July 2004

If the FillColor of an attribute is made to depend on numbers that are
continuously changing in the range of 0 to 1, then the color of the object will change
continuously.

Object Reference Functions

MakeClone
MakeClone (<text>, < text >)
MakeClone (<text >, < text >, <object_name>)

This function creates a clone object. The first parameter specifies the name of the
template that is to be used to create the clone. The second parameter is the name to
be given to the clone. If the third parameter is included, it specifies the name of the
object that is to be the parent of the new clone. If it is not specified, the parent of the
object that was the source of the template will be the parent of the clone. If the clone
is successfully created, true is returned, otherwise false is returned.

Point Functions

Each Point function returns a value that is an array of two numbers. Most of these
functions can be viewed as specific to the current 2D graphics implementation of
iRides. (For this reason, these functions are found in btl.sim.user rather than in
btl.sim.functions. See Chapter 3 for more information on this topic.) In other
implementations of the iRides architecture, different functions might be required (as
in the case of 3D graphical simulations) or different implementations of these
functions would be needed.

ConstrainMouseToEdge
ConstrainMouseToEdge (<object>)
ConstrainMouseToEdge is used to find the point on the edge of an object that is
closest to the location of the mouse when the mouse left button is pressed. This
function is often useful when one object is to move in such a way that it tracks the
mouse, but is constrained to a path. The rule for the Location attribute of the
tracking object will look something like this:
ConstrainMouseToEdge (.Scn.MyPathObj.)
This function is very useful for building sliders and trackers.

41

The iRides Simulation Language 3—Simulation Language Functions July 2004

ConstrainMouseToFill
ConstrainMouseToFill (<object>)
ConstrainMouseToFill is used to find the point in an object that is closest to the
location of the mouse when the mouse left button is pressed. This function is often
useful when one object must move in such a way that it tracks the mouse, but is
constrained to stay in its ‘containing’ object.

ConstrainToEdge
ConstrainToEdge (<object>, <point>)
ConstrainToEdge is used to find the point on the edge of an object that is closest
to a specified point. This function is often useful when one object must move in such
a way that it tracks another moving object, but is constrained to a path. The rule for
the Location attribute of the tracking object will look something like this:
ConstrainToEdge (.Scn.MyPathObj., .Scn.MyMasterObj.Location)

As MyMasterOb3j moves around, the object with this Location rule will shadow the
movement by moving as close as it can be to the Masterobj without leaving its
path object’s edge.

ConstrainToFill
ConstrainToFill (<object>, <point>)
ConstrainToFill is used to find the point in an object that is closest to a specified
point. This function is often useful when one object is to move in such a way that it
tracks another moving object, but is constrained to stay within a closed object. The
rule for the Location attribute of the tracking object will look something like this:
ConstrainToFill (.Scn.MyHomeObj., .Scn.MyMasterObj.Location)

As MyMasterOb3j moves around, the object with this Location rule will shadow the
movement by moving as close as it can be to the Masterobj without leaving its
home object’s interior.

All four constrain.. functions have an object parameter that is used to set bounds
(or constraints) on the point value that is returned. In the case of the functions that
constrain to a fill area, the point that is being returned will be a point within the fill
area of the constraining object. In the case of line type objects, there is no fill, but
the point is constrained to be on the line. In the case of text type objects, the point is
constrained within the rectangular bounds of the text. In the case of grouped objects,
the point produced by the Constrain.. function is constrained to fall within the
rectangular bounds of the group. (Note that this can mean that the resulting point
falls outside all of the components of the group.)

Among the cComstrain.. functions that constrain to edges of objects
(ConstrainToEdge and ConstrainMouseToEdge), the constraints on simple line
and fill objects constrain the point result to the pen edge. In the case of text type
objects and in the case of grouped objects, the point will be constrained to the edge
of the bounding rectangle of the text object or grouped object.

Although the Constrain.. functions are often used to constrain the Location of

one object to be within or on the edge of another object, they can be used to
produce point values for other purposes as well. The Constrain.. functions know

42

The iRides Simulation Language 3—Simulation Language Functions July 2004

nothing about the size of the object whose location is being constrained, so the
constrained object is not forced to be entirely within a constraining object when its
Location is determined by a ConstrainToFill function; only its Location is
constrained to be within the constraining object.

DisplaySize
DisplaySize ()
The function pisplaysSize returns a point whose x and y values are the width and
height of the display in pixels.

MakePoint
MakePoint (<numberX>, <numberY>)
The function MakePoint takes two number parameters. The first is treated as the
value of the [X] component of the point result of the function; the second number
value is made the value of the [Y] component of the point. This manual contains
examples of a number of rules for controlling the motion of objects by using
MakePoint to determine the value of the objects’ Location attributes.

MousePosition
MousePosition ()
MousePosition returns the point in the local coordinate system of the object
whose attribute has the constraint rule, whenever and as long as the left mouse
button is pressed. An author can use MousePosition to make an object move with

the mouse when it is pressed.

MousePosition
MousePosition (<object>)
When MousePosition is called with an object argument, then it returns the point in
the coordinate system of the specified parameter object (when the left mouse button
is pressed).

PercentToPoint
PercentToPoint (<object>, <number>)
PercentToPoint produces a point that is at a particular proportion of the edge
extent of the <object> parameter, as specified by the <number> parameter.
<number> should be between 0 and 1. If the object is a line, then the number will
determine what proportion of the distance between the starting point of the line and
its ending point of the line. This is also true of splines and multilines. If the <number>
parameter is 0.25, then the point returned by PercentToPoint will be one-fourth of

the edge extent of the object.

If the object is a closed figure, such as a rectangle or an ellipse, then the
PercentToPoint function will generate a point that depends on the type of the
object that is the first parameter of the function. A <number> of 0.5 will result in a
point on the opposite side of the object. Text objects and group objects constrain the

43

The iRides Simulation Language 3—Simulation Language Functions July 2004

returned point to the rectangular bounds of the object, just as though there were a
rectangle around that object.

Transform

Transform (<from_object>, <point>, <to_object>)
The Transform function is used to translate point values from the coordinate system
of the parent of <from_object>, to the corresponding value as expressed in the
coordinate system of the parent of <to_object>. The parameters from_object and
to_object are expressed as objects, e.g. .sys.Button., instead of as strings, e.g.
“.sys.Button.” .

For example, consider an object 'A', which is in one group, and an object 'B', of a
different group. As always, A's and B's locations are expressed in the coordinate
system of their respective parents. Now suppose one wants to write a rule to place
object B at A's location. The rule for B's location

Transform(<...>.A., <...>.A.Location, self)
converts A's location (in A's parent's reference system), to the value within B's parent's
reference system, such that B would move to precisely where A is in the scene.

TransformStr

TransformStr (<from_object>, <point>, <to_object>)
The TransformStr function is used to translate point values from the coordinate
system of the parent of <from_object>, to the corresponding value as expressed in the
coordinate system of the parent of <to_object>. The parameters from_object and
to_object are expressed as strings, e.g. “.sys.Button.”, instead of as objects, e.g.
.sys.Button. .

For example, consider an object 'A’, which is in one group, and an object 'B', of a
different group. As always, A's and B's locations are expressed in the coordinate
system of their respective parents. Now suppose one wants to write a rule to place
object B at A's location. The rule for B's location

TransformStr(“<...>.A.”, <...>.A.Location, “<..>.B”)
converts A's location (in A's parent's reference system), to the value within B's parent's
reference system, such that B would move to precisely where A is in the scene.

Pattern Functions
The following function returns values of type pattern.

MakePattern
MakePattern (<text>)
MakePattern is used to create a pattern value, given a descriptive text string.
There are a number of different kinds of strings that can be used to make patterns.
The simplest way to specify a pattern is to use a text parameter that consists of a
number between 0 and 1 enclosed in quotes. This specifies the proportion of fill
color that the pattern should have. For example,

44

The iRides Simulation Language 3—Simulation Language Functions July 2004

MakePattern (“0.75")
will produce a fill that is 75% fill color and 25% pen color.

MakePattern (“0.337)
produces a fill that is 33% fill color and 67% pen color. In a sense, this type of
pattern is not a pattern at all, but rather a specification for assigning a color that
results from combining the official FillColor and LineColor attributes in the proportion
specified.

The usage

MakePattern (“none”)
has the special behavior of filling the object with the pattern “None”. This is the
pattern that displays underlying objects in the fill area and that does not respond to a
mouse click. This pattern is used when an object is to consist of only edge elements.
(In reality, any text parameter that begins with the letter “n” will be treated as “none”.)

There are three more complex, but sometimes quite useful, ways to specify patterns
by encoding the pattern in a text string that consists of hexadecimal numbers. If an
author has programming experience, her or she will probably feel comfortable about
building patterns using this technique. If the concept of numbers expressed in base
16 is new to an author, assistance will probably be required to build these kinds of
pattern descriptions.

The first approach to specifying patterns pixel-by-pixel is to prescribe patterns as
matrices of repeating 4-by-4-bit cells. Authors use MakePattern to describe one of
these cells. Here is one such description

MakePattern (“84217)

which generates a diagonal lines
’ N

pattern:

Examined close up, a single 4-by-4-pixel cell of this pattern
looks like the grid shown at the right.

|

This pattern can be viewed as four rows, each with four B
pixels. In iRides, each such 4-pixel row has a one-]
character ‘name’. There are 16 such patterns. Their names
are shown below.

‘name’ 4-bit row pattern
0

1

N OO O A wWwoN

45

The iRides Simulation Language 3—Simulation Language Functions July 2004

o o ©0© o

o O

¢ [HNN |
.]

Here, the four ‘names’ for bit patterns “1”, “2”, “4”, “8” are associated with the four
rows of the pattern generated by the call MakePattern(“84217).

What pattern will be generated by MakePattern(“edb7”)?

It is also possible to generate repeating 8-by-8-bit patterns using MakePattern.

One uses the same names that are used for the 4-by-4-bit cells, but enters the

names in pairs, where each pair designates a row of eight bits. For example, the call
MakePattern (“01 01 82 7c¢c 10 10 28 c7”)

will generate the kind of fill pattern shown at the right. The larger

pattern 8-by-8 cell size makes it possible to create more interesting

patterns than those that can be achieved with 4-by-4 cells.

Examining this ‘fish scale’ pattern up close,
reveals that it can be analyzed as filling the grid
cells as shown at the right here. The call to
MakePattern has eight pairs of ‘names’ for 4-bit
cell patterns. Each pair of names corresponds to
a row in the 8-by-8-bit pattern. Within a row, the
4-bit pattern on the right is named first in the
pair. Thus the first row of the figure shown here
is designated by “01” in the call to MakePattern
shown above.

=

-

3

.

2
-

Authors can even specify patterns as large as 16-by-16 bits using MakePattern.
This is done by using a text argument that consists of sixteen row descriptions. Each
row description is a set of four ‘names’ (from the set “0”... “f’ shown above).
MakePattern (“0000 59a6 aaaa 5aaa 8aa6 aaaa 59b2 0000 0000
2cd3 5555 2d55 4553 5555 2¢d9 00007)
Within each set of four ‘names’, the first name determines the last four bits of the
row, and the last name determines the first four bits of the row.

46

The iRides Simulation Language 3—Simulation Language Functions July 2004

Universal Operators

The following language constructs, if..then..else and with can return values of
any of the iRides value types: number, logical, text, point, array, object reference,
attribute reference. In a sense, there are six if..then..else constructs, each of
which returns a different value type, and six with constructs.

if..then..else..
if <logical>

then <an expression of any type>

else <an expression of the same type>
The if..then..else.. construct returns the value of the expression following the
then when the if expression evaluates as true. In other cases the construct
returns the value of the expression that follows the else. The else portion of this
construct is optional; if it is not specified and the i£ expression evaluates to false,
nothing further happens.

A less commonly used version of the if..then..else construct takes a number
expression in the i £ clause rather than a logical expression.
if <number>
then <an expression of any type>
else <an expression of the same type>

This construct has exactly the same meaning as
if theNumber = 0
then <an expression of any type>
else <an expression of the same type>

In other words, the if-expression returns true only if it evaluates to zero.

with
with <object>
<an expression of any type>

The with construct makes it possible to write more readable rules. Every reference
to an attribute or to an object within the scope of the with (that is, every reference
in the expression that follows the object reference) will be interpreted as being
preceded by the object reference.

In the body of the event shown immediately below there is a use of the with
construct in the third line ("...with.P.KeyPad.Screen."). Every reference in the
scope of this with statement that does not begin with "." (a period) is to be
interpreted as being prefaced with ".P.KeyPad.Screen.". For example the Mode
attribute that is assigned the value "dialing" is an attribute of .P.KeyPad.Screen,
as are all the LastDialed attributes in the most indented block of code below.

47

The iRides Simulation Language 3—Simulation Language Functions July 2004

if (.P.ReyPad.Screen.Mode = "standby" or .P.KeyPad.Screen.Mode
"recall") and .P.KeyPad.Screen.MidTxt.TextValue <> ""
then with .P.KeyPad.Screen ({
Mode := "dialing";
.P.KeyPad.YesBtn.StartTime := "start call";
if MidTxt.TextValue <> LastDialedl

then {
LastDialed5 := LastDialed4;
LastDialed4 := LastDialed3;
LastDialed3 := LastDialed2;
LastDialed2 := LastDialedl;
LastDialedl := MidTxt.TextValue;
}

}

One consequence of using wi.th is that the author must use full path references for
the object that owns the behavior-governing rule. The sStartTime attribute
referenced on the fourth line line belongs to .P.Keypad.YesBtn., the owner of
this event. It would not ordinarily require a full path specification in an event body,
but it requires one because it is in the scope of a with that specifies a different
object.

case

case <case selector>
{
<case label> : <an expression of any type>
<case label> : <an expression of the same type>

default : <an expression of the same type>
}
The case syntax can sometimes be used in place of a series of nested
if..then..else-type statements where each condition checks for a different value
of the same expression. A case statement may be more compact and easier-to-
read. Here is a constraint rule for valveName, an attribute of the text type:

case ValveNumber
{
0 .Scn.Valve0.DisplayName
1 .Scn.Valvel.DisplayName
2 : .Scn.Valve2.DisplayName
default : “No valve name available”
}

A case construct is like an if..then..else that permits more than two possible
consequences. As with an if..then..else statement, only one of the
consequences actually occurs. case is a reserved word in iRides. In a case
statement, the word "case" is immediately followed by the case selector, which is
ValveNumber in the example above. A case selector is an expression of the type
number or the type logical.

The iRides Simulation Language 3—Simulation Language Functions July 2004

The case selector can be simply an attribute reference, as in the above example,
where valveNumber iS a number attribute. A series of cases then follows in the
case construct. Each case begins with a case label (a constant—not an expression)
followed by a space and the symbol ":" and then a value expression. In the
constraint case construct, the last case label must be the reserved word default,

which signifies the case that is to apply if the case selector is not equal to any of the
other (non-default) case labels. A constraint case construct must have a

default case label because every expression must return a value in iRides.

In the example above, the case construct returns a value of the text type, but case

can be used to return a value of any type. No matter what the return type of the
case construct, the case selector and the case labels can be any of the five case

selector types. Therefore, case selectors can be of type text, as in the example
below.

case ValveType

{
“eross”: .Scn.Valve(.DisplayName
“sequence”: .Scn.Valvel.DisplayName
“safety”: .Scn.Valve2.DisplayName
default : “No valve name available”
}

If a case selector is of type color, then the case labels will be color constants, such
as [0.763, 0.522, 0.989]. If the case selector is of type point, then the case
labels will be point constants, such as [220, 382]. If the case selector is of type
logical, there can be only two case labels, true and false. It doesn’t really make
sense to use a logical case selector. Instead, an author should use an
if..then..else construct.

Note: At least one blank space must be inserted between the "t" in default and
the following colon, ":".

Event Language Elements

An iRides statement is a language construct that carries out an action, but does not
return a value. One type of statement is the assignment statement, which uses the
assignment operator := to assign values to attributes. Another type of statement is
one that uses an event statement function, such as RingBell () to carry out an
action that cannot be achieved through attribute value manipulations. Statements
may appear only in event bodies.

49

The iRides Simulation Language 3—Simulation Language Functions July 2004

//

/*

<any attribute> := <any constraint expression of the same type as the attribute>;
The := event operator is the assignment operator. It can be used to assign to any
attribute the value that can be computed from the constraint expression on the right

side of the operator. It can also be used to assign a value to an array element, as in
Location[Y] := 450;

/ / <any text on one line >
// is the standard comment operator. If a line begins with //, then iRides treats the
remainder of the line as a comment. Each line of comment must be preceded by two
slash symbols: //.

Each such comment will be given a line to itself in the formatted event body. If an
author attempts to append a comment to the end of a statement line, that comment
will move to the line below when the event is accepted. A comment in iRides is a
statement; hence, it can appear only where a statement can appear.

*/
/* <any text > */
/* ... */ is the standard multiline comment operator. All text between the opening /*
and the closing “*/ will be treated as a comment, and will be displayed exactly as
typed in.

/7%

/ /% <text on one line >

One way to create iRides simulations is to develop them using the latest versions of
the RIDES/VIVIDS program, an application written in C++ for Unix-like operating
systems. (Rivets, the most recent port of this program, is available for PCs running
Linux, for Macintosh computers running OS 10.3 with X11, and for Silicon Graphics
running IRIX.) Certain functions in RIDES/VIVIDS are now considered obsolete and
are not available in iRides (unless someone would like to recreate them using the
features described in Chapter 4 to implement them for inclusion in the sim/user/
directory). Other functions, described in a later section, have been preserved in
iRides to support the re-use of previously authored simulations, but are considered
deprecated, because there are now better ways to achieve the desired effects. It is
possible to use a special approach to commenting to embed iRides-specific code in
a Rivets function so that it will be ignored by Rivets, but can still be used in iRides.

/ /% allows an author to include in a VIVIDS simulation a line of code that is invalid
for VIVIDS but valid for iRides. For example, the procedure ‘watchmouse’ is
unknown in VIVIDS; if a VIVIDS event includes a call of this procedure, the event will
not be accepted. However, the author may be authoring in VIVIDS but intending to
run the event in iRides. To make this possible, this special comment marker is
defined. If a VIVIDS event includes the line

//% watchmouse (true);

50

The iRides Simulation Language 3—Simulation Language Functions July 2004

VIVIDS will just treat it as a comment line, but when that event is run in iRides, it will
be treated not as a comment, but as a call of watchmouse.

It may sometimes be the case that when running an event in VIVIDS, one procedure
should be called, but when running that event in iRides, a different procedure should
be called. This can be accomplished by combining the ‘//%’ comment marker and
the /* ... */ comment marker.

//% playsound(“bad.wav”); /*

RingBell();

/1% */
When running VIVIDS, the first and third lines will be treated as comments, but not
the second, so RingBell will be called. When running iRides, the first line will not
be treated as a comment, so playsound will be called, but the /* at the end of that
line will be treated as the start of a multiline comment, terminated in line three, so
RingBell will not be called.

case
case <case selector>
{
<case label> : <any event statement> ;
<case label> : <any event statement> ;

default : <any event statement>;

}
The event case construct does not return a value, as do the case constraints, but

rather controls the execution of event statements, as in the example below.

case .Scn.UserDisplay.ValveNumber

{
0: .Scn.UserDisplay.ValveName := .Scn.ValveO.DisplayName;
1:
{
.Scn.UserDisplay.ValveName := .Scn.Valvel.DisplayName;
RingBell();
}
2:
{
.Scn.UserDisplay.ValveName := .Scn.Valve2.DisplayName;
RingBell();
MoveToBack (.Scn.Valve2.);
}
default : RingBell();
}

A series of statements (enclosed in { } characters) can be the <any event statement>
that results from a case matching in the case event construct. Every statement must
end with a ; character. The default case is not allowed in the case event
statement. (However, the case constraints require that the default case be

specified.)

51

The iRides Simulation Language 3—Simulation Language Functions July 2004

Note: At least one blank space must be inserted between the "t" in default and
the following colon, ":".

AddToArray

' AddToArray (<attributename>,<value>)
This event statement makes it possible to add a value to an array. The first
parameter provides the name of the attribute that contains the array, and the second
parameter is the value that is to be added. If the attribute does not exist or is not of
the type array, then a simulation error will occur. Calling this procedure will result in
the array’s size being increased by one, and the value will be put in the last cell of
the array. The value can be of any type—text, numeric, logical, etc.—but it must be
of the same type as the values that are already in the array.

DoEvent
DoEvent (<eventname>)
This event statement makes it possible for one event to call another explicitly.
Callable events provide a mechanism for developing and executing subroutines, The
called event need not have a specified trigger or delay. When a statement with this
form is executed, the specified event's body is executed immediately. Even if the
called event has a defined delay, that delay will be ignored. The condition part of a
called event is also ignored.

Upon completion of the called event body, control returns to the calling event. Called
events can be embedded. For example, the body of event A can call event B, which
in turn calls event C. When C is finished, control returns to the next statement in
event B (after the DoEvent call of event C). When B is finished, event A's execution
resumes with the statement after its call of event B.

Recursion is not allowed in callable events. If an event that is not yet completed is
called again, that subsequent call (that DoEvent statement) is simply skipped.

DragAndClick

DragAndClick (<objectname>,<objectname>) ;

DragAndClick (<objectname>,<point>,<scenename>) ;

DragAndClick (<point>,<objectname>,<scenename>) ;

DragAndClick (<point>,<point>,<scenename>) ;
This event statement makes it possible to simulate placing the mouse in one
location, clicking the mouse, holding it down while it is moved to a second location,
and releasing it. (Unfortunately, the movement of the mouse is not visible.) One use
for this would be to simulate moving a slider from one position to another. The first
position for placing the mouse is determined by the first parameter, possibly in
conjunction with the third. The final position for the mouse is determined by the
second parameter, possibly in conjunction with the third. If the first or second
parameter is an object name, the point used is the location of that object; if the first
or second is a point, then the scene name must be specified, and the mouse
position is taken as the value of the point on that scene.

DragAndClick(.Front_Panel.Power Light., .Front_Panel.Mode_Lig

ht);

52

The iRides Simulation Language 3—Simulation Language Functions July 2004

will move the mouse to the location of the Power_Light, click the mouse, hold it

down while moving to the location of the Mode_Light, and release the mouse.
DragAndClick([50,50],[100,100],Front_Panel);

will move the mouse to the location [50,50] in the Front_Panel scene, click the

mouse, hold it down while moving to the location [100,100] in the Front_Panel

scene, and release the mouse.

FadeIn
FadeIn (<object_name>,<number>) ;
This event statement makes it possible to make a simulation object gradually
appear. The object to be affected is specified with the object_name parameter.
The length of time, in seconds, that it takes to go from invisible to fully visible is
specified with the number parameter.

FadeOut
FadeOut (<object_name>,<number>) ;
This event statement makes it possible to make a simulation object gradually
disappear. The object to be affected is specified with the object_name parameter.
The length of time, in seconds, that it takes to go from fully visible to invisible is
specified with the number parameter.

fclose
fclose (<filename>) ;
The file to close is specified by the text value of <filename>. This function can be
used only as an event statement.

Flare
Flare (<attributename>,<value>,<delay>) ;
This event statement makes it possible to wait for a specified amount of time before
setting an attribute value. For example, it might be useful to specify that a particular
light should come on 10 seconds after some other event. This could be done in an

event by writing
Flare(“.Front_Panel.warningLight.state”,”on”,10);

The first parameter is the name of the attribute whose value is to be set. The second
parameter is the value to be used; it may be of any type—logical, numeric, etc. The
third parameter is the length of the delay, in seconds, before the value change is to
take place.

fopen
fopen (<filename>, <type>) ;
The file to open is specified by the text value of <filename>. The <type> argument
can be any text expression that evaluates to either “¢”, “w”, “a” or “r+”. Type “¢”
opens a file for reading. “w” opens a file for writing. “a” opens a file for writing, but all
output is appended to the existing file if there is one. “r+” opens a file for random
access. This function can be used as either an event statement, or as an expression

53

The iRides Simulation Language 3—Simulation Language Functions July 2004

returning a boolean value. A return value of true means the file opening was
successful.

If the file will be written to using the setNthRecord function, then £open should be
opened with the special read/write parameter "r+", as in
fopen ("MyRecords", "r+");

if..then

if <logical>
then <any event statement>;
An if..then statement does not require an else clause. The substatement in the
then clause must end in a semicolon.

if..then..else

if <logical>

then <any event statement>;

else <any event statement>;
Although it is superficially quite similar to the if..then..else expression construct,
the iRides if..then..else statement construct does not return a value. Instead,
when the event is triggered, if the value of the i£ expression is true then the event
statement following the then is carried out. Otherwise the event carries out the
event statement following the else.

The if..then..else statement requires a semicolon after each statement. Also,
compound statements are permitted, as in this example:
if .S.Pwr.VoltsOut <= .S.Pwr.MaxSafeVolts
then {
.S.Pwr.VoltsAdjustUp := .S.Pwr.VoltsAdjustUp + 1;
.S.Puwr.0ldvVolts := .S.Pwr.VoltsOut;
}
else RingBeli();.

MoveAndClick

MoveAndClick (<objectname>) ;
MoveAndClick (<point>,<scenename>) ;
This event statement makes it possible to simulate moving the mouse to a specified
location and clicking it. (Unfortunately, the movement of the mouse is not visible.)
One possible use for this would be to simulate clicking a button. The ending position
for the mouse is determined by the first parameter, possibly in conjunction with the
second. If the first parameter is an object name, the point used is the location of that
object. If the first parameter is a point, then the scene name must be specified, and
the mouse position is taken as the value of the point on that scene.
MoveAndClick(.Front_Panel.Power_ Toggle.):
will move the mouse to the location of the Power_Toggle and click the mouse.
MoveAndClick([50,50],Front_Panel);
will move the mouse to the location [50,50] in the Front_Panel scene and click the
mouse.

54

The iRides Simulation Language 3—Simulation Language Functions July 2004

MoveBwd
MoveBwd (<object>) ;
The MoveBwd event statement moves the object designated by the parameter one
step closer to the back in the list of objects in its parent’s view.

MoveFwd
MoveFwd (<object>) ;
This event statement has the effect of moving the object designated by the
parameter one step closer to the front in the list of objects on the scene.

MoveToBack
MoveToBack (<object>) ;
The MoveToBack event statement moves the object argument to be the backmost
object within its parent’'s view. The object will then “lie below” other objects that it
may have formerly obscured.

MoveToFront
MoveToFront (<object>) ;
The MoveToFront event statement moves the object argument to be frontmost
within its parent’s view. The object will then “lie on top of” other objects that may
have formerly obscured it.

Play MPEG
Play MPEG (<text>);
Play MPEG (<text><logical>) ;

Play MPEG (“TheFileName”); opens a video playing interface with the mpeg file
specified in the text parameter to Play MPEG. There is an optional second
parameter. If it is set t0 txrue, the simulation is inactive until the video finishes; if it is
false, the simulation remains active. The default value is true. The user can use
the graphic widgets of this interface to start and stop video playing of the named file.

PlayInstruction
PlayInstruction (<text>, <text>, <text>);
PlayInstruction is used to present instruction under the control of an event.
Authors can write events that deliver all or only a portion of a previously authored
lesson to students when a particular condition occurs. The event condition that
triggers the presentation of instruction may refer to some state of the simulation, or it
may refer to student model attribute value changes or instructional item attributes.

The PlayInstruction function can only be used in event bodies. The function
takes three parameters. The first text parameter is the name of the instructional item

to play. An example is
"I :HandlePowerError . .We_will reset."

55

The iRides Simulation Language 3—Simulation Language Functions July 2004

The second text parameter is one of "Demonstrate”, "Practice", or "Test". This
parameter prescribes the mode in which the lesson or lesson fragment should be
presented. The third parameter is either "Resume” or "Stop". The "Resume" option
means that if opportunistic instruction occurs during a lesson, then that lesson
should resume when the opportunistic lesson or lesson fragment is finished. The
"Stop" option means that the lesson that had been playing will end right away.

PlaySound
PlaySound (<text>);
PlaySound (“TheFileName”); takes a text parameter, which specifies the name
of the file in .au format that should be played. If a sound is already being played
when another PlaySound command is issued, then the old sound will stop playing
and the new one will begin.

PopupCheckBox

PopupCheckBox

(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,

<button_label>,<logical>,...) ;
PopupCheckBox opens a Java Swing interface with two or more check boxes. It
takes a minimum of seven parameters. The interface includes an “OK” button. When
that button is selected, the labels of the check boxes that were selected are returned
to the simulation. The first parameter specifies the name of the attribute that is to
receive that returned value. The second parameter, <prompt>, contains text that will
be displayed in the interface above the check boxes; its value could be . The third,
fourth, and fifth parameters specify where the interface is to be displayed, at position
[<numberX>,<numberY>] in scene <scene_name>. If <scene_name> is specified as
“_ the location is understood to be relative to the simulation frame, not to any
specific scene. The remaining parameters should be as many text-logical pairs as
the author needs, with a minimum of one pair. The first element of the pair is the
label that should be placed on a check box and the second element specifies
whether that checkbox should be initialized as selected (true) or not selected (false).
An example of the use of this procedure is

PopupCheckBox (“.sys.valuesToShow”,”Which values should be

made visible?”,0,0,””,”Probability vValues”,true,”Utility
Values”,true,”Utility Sums”, false);

PopupDialog

PopupDialog

(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>) ;
PopupDialog opens a Java Swing dialog, for presentation purposes only. It takes
five parameters. The interface includes an “OK” button. When that button is
selected, the dialog is dismissed and the value “CLOSED” is returned to simulation.
The first parameter specifies the name of the attribute that is to receive that returned
value. The second parameter, <prompt>, contains text that will be displayed in the
interface. The third, fourth, and fifth parameters specify where the dialog is to be
displayed, at position [<numberX>,<numberY>] in scene <scene_name>. If
<scene_name> is specified as “”, the location is understood to be relative to the
simulation frame, not to any specific scene.

56

The iRides Simulation Language 3—Simulation Language Functions July 2004

PopupKeypad
PopupKeypad
(<attribute_name>,<prompt>,<numberX>,<numberY >,<scene_name>,
<initial_value>) ;
PopupKeypad opens a Java Swing keypad interface. It takes six parameters. The
interface includes an “OK” button. When that button is selected, the value that was
entered into the keypad is returned to the simulation. The first parameter specifies
the name of the attribute that is to receive that returned value. The second
parameter, <prompt>, contains text that will be displayed at the top of the interface;
its value could be “. The third, fourth, and fifth parameters specify where the
interface is to be displayed, at position [<numberX>,<numberY>] in scene
<scene_name>. If <scene_name> is specified as **, the location is understood to be
relative to the simulation frame, not to any specific scene. The sixth parameter is a
number that specifies an initial value for the keypad. An example of the use of this
procedure is
PopupKeypad(“.sys.keypadval”,”What is the area of a 2’ x 3’
rectangle?”,0,0,”7,0);

PopupLogin

PopupLogin

(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,

<initial_value>,<initial_value>) ;
PopupLogin opens a Java Swing login interface. It takes seven parameters. The
interface includes an “OK” button. When that button is selected, the values that were
entered into the interface are returned to the simulation. The first parameter
specifies the name of the attribute that is to receive those returned values. The
second parameter, <prompt>, contains text that will be displayed at the top of the
interface; its value could be “. The third, fourth, and fifth parameters specify where
the interface is to be displayed, at position [<numberX>,<numberY>] in scene
<scene_name>. If <scene_name> is specified as *’, the location is understood to be
relative to the simulation frame, not to any specific scene. The sixth parameter
specifies an initial name for the login interface. The seventh parameter specifies an
initial password. The password will be displayed with a series of *',s. An example of

the use of this procedure is
Popuplogin (“.sys.textVal”,”"Please log in your user name and

password.”,0,0,””,”Joe Smith”,6”1234");

PopupMenuEntry
PopupMenuEntry
(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,
<menu_item>,...) ;
PopupMenuEntry opens a Java Swing interface with one or more menu items. It
takes a minimum of six parameters. When a menu item is selected, that item is
returned to the simulation. The first parameter specifies the name of the attribute
that is to receive that returned value. The second parameter, <prompt>, contains
text that will be displayed in the interface above the menu; its value could be “. The

57

The iRides Simulation Language 3—Simulation Language Functions July 2004

third, fourth, and fifth parameters specify where the interface is to be displayed, at
position [<numberX>,<numberY>] in scene <scene_name>. If <scene_name> is
specified as “, the location is understood to be relative to the simulation frame, not
to any specific scene. The remaining parameters should be as many text items as
the author needs for the menu, with a minimum of one. An example of the use of this
procedure is

PopupMenuEntry(“.sys.valuesToShow”,”Which color is not in
the French flag?”,0,0,””,”red”,”green”,”blue”);

PopupNumericEntry

PopupNumericEntry

(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,

<logical>,<lower_limit>,<upper_limit>) ;
PopupNumericEntry opens a Java Swing text entry interface. It takes eight
parameters. The interface includes an “OK” button. When that button is selected, the
value that was entered into the interface is returned to the simulation. The first
parameter specifies the name of the attribute that is to receive that returned value.
The second parameter, <prompt>, contains text that will be displayed at the top of
the interface; its value could be “. The third, fourth, and fifth parameters specify
where the interface is to be displayed, at position [<numberX>,<numberY>] in scene
<scene_name>. If <scene_name> is specified as *, the location is understood to be
relative to the simulation frame, not to any specific scene. The sixth parameter
specifies whether a floating point entry is to be allowed (true) or not (false). The
seventh and eighth parameters set the lower and upper limits on the values that will
be accepted. If the user types in anything that does not conform to these
specifications, the type in is ignored. An example of the use of this procedure is

PopupNumericEntry (“.sys.textVal”,”Enter a number between -5

and +5, inclusive.”,0,0,””,false,-5,5);

PopupRadio

PopupRadio

(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,

<initial_value>,<button_label>,<button_label>,...) ;
PopupRadio opens a Java Swing interface with two or more radio buttons. It takes
a minimum of eight parameters. The interface includes an “OK” button. When that
button is selected, the label of the radio box that was selected is returned to the
simulation. The first parameter specifies the name of the attribute that is to receive
that returned value. The second parameter, <prompt>, contains text that will be
displayed in the interface above the radio buttons; its value could be . The third,
fourth, and fifth parameters specify where the interface is to be displayed, at position
[<numberX>,<numberY>] in scene <scene_name>. If <scene_name> is specified as
“, the location is understood to be relative to the simulation frame, not to any
specific scene. The sixth parameter is a string that indicates which radio button is to
be initially selected; if it doesn’t match any of the button labels, nothing will be
preselected. The remaining parameters should be as many text items as the author
needs, with a minimum of two. Each of these items is a label that should be placed
on a radio button. An example of the use of this procedure is

PopupRadio(“.sys.valuesToShow”,”Who was the third president

of the ©United States?”,0,0,””,”Thomas Jefferson”, "George

58

The iRides Simulation Language 3—Simulation Language Functions July 2004

Washington, “Thomas Jefferson”,”Abraham Lincoln”,”Franklin
Delano Roosevelt”);

PopupSlider
PopupSlider
(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,
<lower_limit>,<upper_limit><initial_value>) ;
PopupSlider opens a Java Swing text entry interface. It takes eight parameters.
The interface includes an “OK” button. When that button is selected, the value of the
slider is returned to the simulation. The first parameter specifies the name of the
attribute that is to receive that returned value. The second parameter, <prompt>,
contains text that will be displayed at the top of the interface; its value could be “.
The third, fourth, and fifth parameters specify where the interface is to be displayed,
at position [<numberX>,<numberY>] in scene <scene_name>. If <scene_name> is
specified as ", the location is understood to be relative to the simulation frame, not
to any specific scene. The sixth and seventh parameters set the lower and upper
limits on the slider. The eight parameter specifies an initial value for the slider.
These last three values should be integers.
PopupSlider (“.sys.textvVal”,”Select an initival wvalue for
the voltage.”,0,0,77,0,28,0);

PopupTextEntry
PopupTextEntry
(<attribute_name>,<prompt>,<numberX>,<numberY>,<scene_name>,
<initial_value>) ;
PopupTextEntry opens a Java Swing text entry interface. It takes six parameters.
The interface includes an “OK” button. When that button is selected, the value that
was entered into the interface is returned to the simulation. The first parameter
specifies the name of the attribute that is to receive that returned value. The second
parameter, <prompt>, contains text that will be displayed at the top of the interface;
its value could be “. The third, fourth, and fifth parameters specify where the
interface is to be displayed, at position [<numberX>,<numberY>] in scene
<scene_name>. If <scene_name> is specified as *”, the location is understood to be
relative to the simulation frame, not to any specific scene. The sixth parameter
specifies an initial value for the interface. An example of the use of this procedure is
PopupTextEntry (“.sys.textVal”, ”What is your

name?", 0' 0' IIII’ nn) ;

PressClose
PressClose();
This event function has the effect of clicking on the Close button in the student's
instruction window. The Close button is used to close the student window. It re-
opens automatically the next time text is presented in that window.

59

The iRides Simulation Language 3—Simulation Language Functions July 2004

PressContinue
PressContinue();
The PressContinue function has the effect of a student clicking on the Continue
button in the instruction window. The Continue button makes certain instructional
items continue. A Wait for Student instructional item, for example, is completed
when the student clicks the Continue button. A Goal instructional item is evaluated
by iRides when the student chooses this button.

PressDontKnow
PressDontRnow() ;
This event function has the same effect as a Student pressing the Don't Know
button in the instruction window. The Don't Know button makes iRides present the
item remediation for the current instructional item.

PressStop
PressStop();
This function has the same effect, when called, as a student pressing the Stop
button in the instruction window interface. The Stop button ends the current lesson
but does not end the course presentation.

pPrint
Print (<any expression>) ;
The Print event statement will produce output to the term window. The expression
is optional; if used, it can be any expression that returns a value.
Print () ; will just output a blank line to the terminal.
Print (4 * 3); will output “12”.
Print (format (... .)) ; will output whatever the format call produces.

Quit
Quit (<logical>);
The Quit event statement will cause the iRides application to quit. If the argument is
true, a dialog box will pop up to confirm the quit. If the user chooses "No", iRides
continues. A false argument will simply quit without asking for confirmation. This
makes it possible for authors to decide whether quitting must be confirmed for their
application.

RandSeed
RandSeed (<number>) ;
The RandSeed event statement function initializes the random number generator.
Using the same number with RandSeed ensures that the same sequence of random
numbers will appear on different runs in a simulation. To get different sequences,
one must initialize with a different number each time. For example, one could use

this call in an event body:
RandSeed (Now());

60

The iRides Simulation Language 3—Simulation Language Functions July 2004

Refresh
Refresh ();
The event statement Refresh() will cause all graphics to be updated on the
screen. iRides automatically updates the graphics once an event is finished; this
statement allows the update to occur at specified points within an event. Authors
need to remember that there is no way to accept new user input during an event,
and that the clock is frozen during the event.

RemoveFromArray
RemoveFromArray (<attributename>,<value>)
This event statement makes it possible to remove a value from an array. The first
parameter provides the name of the attribute that contains the array, and the second
parameter is the value that is to be removed. If the attribute does not exist, a
simulation error will occur. If the value is not found in the array, the call is ignored.

ResetClock
ResetClock ();
The ResetClock event statement function resets the internal clock. The value of
.s8ys.Clock immediately changes to 0 and begins incrementing again when the
event is over. If an event contains a number of statements, all the statements that
follow the ResetClock statement in the event will take place before the clock takes

on a value greater than 0.

ResetClock
ResetClock (<number>) ;
The ResetClock event statement function resets the internal clock. The value of
.8ys.Clock immediately changes to the value of the argument and begins
incrementing again when the event is over. If an event contains a number of
statements, all the statements that follow the ResetClock statement in the event
will take place before the clock takes on a value greater than the value of the
argument.

RingBell
RingBell ();
Ringbell () ; makes the computer beep.

Set_Array
Set_Array (<text>, <array>);
The set_Array event statement sets the value of the attribute specified in the first
argument to the value of the second argument. If the attribute does not exist or is
not of the type array, then a simulation error will occur. Authors should test for the
existence of the attribute that is about to be set by using the AttExists function.

61

The iRides Simulation Language 3—Simulation Language Functions July 2004

Set_AttRef
Set_AttRef (<text>, <attref>);
The set_AttRef event statement sets the value of the attribute specified in the first
argument to the value of the second argument. If the attribute does not exist or is
not of the type attribute reference, then a simulation error will occur. Authors should
test for the existence of the attribute that is about to be set by using the AttExists
function.

Set_ObjectRef
Set_ObjectRef (<text>, <objectref>);
The set_ObjectRef event statement sets the value of the attribute specified in the
first argument to the value of the second argument. If the attribute does not exist or
is not of the type object reference, then a simulation error will occur. Authors should
test for the existence of the attribute that is about to be set by using the AttExists
function.

Set_Value
Set_Value (<text>, <value>);
The set_value event statement sets the value of the attribute specified in the first
argument to the value of the second argument. If the attribute does not exist, a
simulation error will occur. The value may be of any type—text, number, array, etc.
Authors should test for the existence of the attribute that is about to be set by using
the AttExists function.

SetCursor
SetCursor (<number>);
The setcCursor event statement changes the simulation cursor. The cursors used
are those from the Xcursor font. The argument must be an even integer between 0
and 152 inclusive, any other value will cause the cursor to change to the default
iRides simulation cursor (number 60). To see the appearances of the standard
cursors in X, see "Appendix |: The Cursor Font" in Xlib Reference Manual, pp 641-
642.

SetNthRecord
SetNthRecord (<filename>, <line number>, <text>) ;
This event statement writes a record to a file. The file must be opened with the
read/write argument "r+", as in
fopen(<filename>, "r+");

When executed, a SetNthRecord statement will replace the line of the file
specified by <line number> with the text specified by <text>. If <text> is longer than
the existing line, then the new record will be truncated to the length of the existing
line. If the text length is less than the existing line length, then the line will be padded
with new spaces.

62

The iRides Simulation Language 3—Simulation Language Functions July 2004

If the file contains N lines and the <line number> argument given to SsetNthRecord
is N + 1, then a new line will be added as the N+1 record and will include the whole
of <text> (not truncated). The permanent line length of the N+1 record will be
established as the length of <text>.

There is also a function version of the setNthRecord routine, which returns a text
value that describes the error status resulting from the call. This function returns "**
EOF **" if the <line number> parameter has a value greater than the number of lines
in the file plus one. It returns "** NOT OPEN **" if the file is not opened with write
access. If the function is called without error, it returns the empty string, "".

ShowURL
ShowURL (<text>, <logical>) ;
This event function, when called, will show the URL specified in the first argument. If
the second argument is true, it will open a new browser window. Otherwise, the
page will be shown in an existing browser window.

StartTimer
StartTimer();
StartTimer (<number>) ;

This event statement starts a timer. A possible use for this is to measure how much
time passes before something occurs. It should be used in conjunction with
StopTimer, which was described earlier in this document. There are 10 different
timers available, numbered from 0 to 9. You can specify which timer to use by
specifying a value for <number>; if you don’t specify one, the default value of 0 will
be used. An example of the use of StartTimer and StopTimer in an event body
is

Rotation := 0;

StartTimer(3);

While (Rotation < 90)

Rotation := Rotation + 2;

Print (“Rotation completed in “,StopTimer(3),” seconds.”);
If startTimer is called with some parameter, say ‘3’, and then it is called again
with the same parameter, it restarts with a time value of 0. So a subsequent call of
StopTimer with that parameter will return the time elapsed from the more recent

StartTimer call.

StopSound
StopSound ();
StopSound (); has the effect of stopping the playing of the current sound.

system_call
system_call (<text>);
This new language feature makes it possible to issue system calls from iRides. The
system_call function lets an iRides application make any Unix system call. This

63

The iRides Simulation Language 3—Simulation Language Functions July 2004

makes it possible for sophisticated authors who are also programmers to write their
own utility programs that can be called by their iRides simulations.

WatchMouse
WatchMouse (<logical>) ;
By default, the attribute .sys.MousePos only reflects the mouse position when the
mouse button is down. If an event calls WatchMouse(true), .sys.MousePos will
reflect the mouse position regardless of the button state. To revert to the default
condition, call watchMouse(false);

while
while <logical>
<any event statement>;
This potentially dangerous statement type can be used to repeat a sequence of
operations so long as a logical condition holds true. It is very important that the
author write the statement in such a way that the logical eventually becomes false as
a result of the operations performed in the event statement. If it never does, iRides
will never exit the while. The only way out in such a case is to kill iRides.

The while event statement can be easily misunderstood. Authors must remember
that events take place 'instantaneously' within an event. Despite the normal meaning
of the word 'while' in ordinary language use, there can be no simulation updating
inside the body of a while statement. Nothing can 'happen' in a simulation during
the execution of a while.

writeline
writeline (<filename>, <text>);
This event statement will write out to file the value of the second argument which
may be an expression. A newline character will be appended to the text in the output
file. There is also a function version of the writeline routine, which returns true
or £alse, depending on whether the functions successfully wrote the text to the file.

64

The iRides Simulation Language 3—Simulation Language Functions July 2004

Database Functions

In some iRides applications, authors may want to maintain a database of records in
which each record can be individually read or written. iRides provides simple
mechanisms for retrieving and setting record values in a file on disk. The disk files
are text files in which each line is treated as another record. Records are of type
text. (Of course, authors can translate portions of textual records into other types,
such as numbers, points, and so on.) Records can be of different lengths, but the
length of a record cannot be changed. When a record is written with fewer
characters than it had before, the remainder of the record is padded out with spaces.
When a record is written with more characters than it had before, the extra
characters are chopped off and do not appear in the saved record.

fclose
fclose (<filename>) ;
The file to close is specified by the text value of <filename>. This function can be
used only as an event statement.

fopen
fopen (<filename>, <type>);
The file to open is specified by the text value of <filename>. The <type> argument
can be any text expression that evaluates to either “r”, “w”, “a” or “r+”. Type “r’
opens a file for reading. “w” opens a file for writing. “a” opens a file for writing, but all
output is appended to the existing file if there is one. “r+” opens a file for random
access. This function can be used as either an event statement, or as an expression
returning a boolean value. A return value of true means the file opening was

successful.

If the file will be written to using the setNthRecord function, then £open should be
opened with the special read/write parameter "x+", as in
fopen ("MyRecords", "r+");

GetNthRecord
GetNthRecord (<filename>, <record number>) ;
This event statement returns the Nth line from a file. The file must have already
been opened with the fopen function. If the GetNthRecord () function is calied on a
file that has not been opened, then the string "** NOT OPEN **" is returned. If the
line does not exist in the file, "** EOF **" is returned.

NumRecords
<number> NumRecords (<text>);
The function NumRecords is a function of type number that returns a count of the
records in the file. If the file doesn't exist or isn't open for reading, NumRecords will

return -1.

65

The iRides Simulation Language 3—Simulation Language Functions July 2004

readline
readline (<filename>)

This expression will read the next line from the named file if the file is open for
reading. If the file is not open for reading, then the function will return the string * **
FILE NOT OPEN **» The string returned does not include the newline character
found in the file. If no more lines are available in the file, then the function returns
wxx EOF **7 A well-designed event that reads from a file should check for these
values.

SetNthRecord
SetNthRecord (<filename>, <line number>, <text>) ;
This event statement writes a record to a file. The file must be opened with the

read/write argument "r+", as in
fopen(<filename>, "r+");

When executed, a SetNthRecord statement will replace the line of the file
specified by <line number> with the text specified by <text>. If <text> is longer than
the existing line, then the new record will be truncated to the length of the existing
line. If the text length is less than the existing line length, then the line will be padded
with new spaces.

If the file contains N lines and the <line number> argument given to SetNthRecord is
N + 1, then a new line will be added as the N+1 record and will include the whole of
<text> (not truncated). The permanent line length of the N+1 record will be
established as the length of <text>.

There is also a function version of the SetNthRecord routine, which returns a text
value that describes the error status resulting from the call. This function returns "**
EOF **" if the <line number> parameter has a value greater than the number of lines
in the file plus one. It returns "** NOT OPEN **" if the file is not opened with write
access. If the function is called without error, it returns the empty string, "".

writeline .
writeline (<filename>, <text>);
This event statement will write out to file the value of the second argument which
may be an expression. A newline character will be appended to the text in the output
file. There is also a function version of the writeline routine, which returns txue
or £alse, depending on whether the functions successfully wrote the text to the file.

SCORM Functions
iRides simulations can be delivered as Java applications, as Java Web Start
applications, and as Java applets. If the applet choice is made, it is possible to make
your iRides simulation compliant with the Shareable Content Object Reference

66

The iRides Simulation Language 3—Simulation Language Functions July 2004

Model (SCORM) of the Advanced Defense Learning (ADL) initiative. To support
SCORM-compliant authored simulations, the iRides language has been given four
functions that support the required functionality. If any of these functions is called in
an execution environment that is not SCORM-enabled, then it will fail silently, as
thought it had never been called.

scormfinish
scormfinish ();
This calls the corresponding SCORM function LMSfinish.

scormgetvalue
scormgetvalue (<text>);
This calls the corresponding SCORM function LMSgetvalue, passing it the text
parameter.

scorminitialize
scorminitialize ();
This calls the corresponding SCORM function LMSinitialize.

scormsetvalue
scormsetvalue (<text><text>);
This calls the corresponding SCORM function LMSsetvalue, passing it the two text
parameters

Deprecated Functions and Procedures

Several functions and procedures that were used in VIVIDS are no longer needed in
iRides, because iRides offers improved ways to bring about the desired results.
Nonetheless, in order to support backward compatibility with VIVIDS, because these
language features are still working in iRides, even VIVIDS simulations that relied
upon them can be exported and used in iRides. We recommend against using these
features in the development of new iRides simulations, however. Many of these
functions were required in earlier systems that did not support attribute reference
values. Now that one attribute can store a reference to another attribute, there are
better (safer, more maintainable) ways to accomplish the desired result.

AttExists
<logical> AttExists (<text>)
This returns a logical value specifying whether or not the attribute named in the
<text> parameter is an existing attribute. The attribute name must be fully specified

67

The iRides Simulation Language 3—Simulation Language Functions July 2004

€.0. AttExists(".scenel.object.rotation"). Any event that makes use of
any of the Lookup_ or set_ functions—for example, Lookup Number() oOr
Set_Logical ()— should first use AttExists to ensure that there will be no run-
time error that could interrupt iRides.

GetRUText
<text> GetKUText (<text><text>)

The first argument of the GetRuText function specifies the full name of an object
with an associated knowledge unit. The second argument specifies the name of a
topic for that knowledge unit. The function returns the text of the discussion with that
topic name for that object's authored knowledge.
If the object does not exist, or if it has no knowledge unit, or if the knowledge unit
does not have the named topic, then the function returns the empty text string, "".
Call this function only within an event.

Lookup_Color
<array of three numbers> Lookup_Color (<text>);
This function returns the color value (an array of three numbers) of the attribute
named as the text parameter. If the attribute does not exist, then the simulation will
halt giving an "unknown attribute" error. To avoid this, authors should always test for
the existence of the attribute first, using the AttExists function. For example,
if AttExists(format(".S.Light%%" .S.CurNum, ".FillColoxr")
then .S.CurColor := Lookup_Color (format(".S.Light%%"
.S.CurNum, ".FillColoxr")):; .
The effect of this example will be to put into .S.CurColor the value that is in some
attribute such as .s.Light21.FillColor. If the attribute does exist, but is not of
the type color, then a "wrong type" error will result.
Call this function only within an event.

Lookup_ Logical
<logical> Lookup_Logical (<text>);
This function returns the logical value of the attribute named as the text parameter. If
the attribute does not exist, then the simulation will halt giving an "unknown attribute”
error. To avoid this, authors should always test for the existence of the attribute first,
using the AttExists function. If the attribute does exist, but is not of the type
logical, then a "wrong type" error will result. Other such functions for text, points,
color, number, and pattern also exist.
Call this function only within an event.

Lookup Number
<number> Lookup_Number (<text>);
This function returns the numeric value of the attribute named as the text parameter.
If the attribute does not exist, then the simulation will halt giving an "unknown
attribute" error. To avoid this, authors should always test for the existence of the
attribute first, using the AttExists function. If the attribute does exist, but is not of
the type number, then a "wrong type" error will result. Other such functions for text,
points, logical, color and pattern also exist.

68

The iRides Simulation Language 3—Simulation Language Functions July 2004
Call this function only within an event.

Lookup Pattern
<pattern> Lookup_ Pattern (<text>);

This function returns the pattern value of the attribute named as the text parameter.
If the attribute does not exist, then the simulation will halt giving an “unknown
attribute” error. To avoid this, authors should always test for the existence of the
attribute first, using the AttExists function. If the attribute does exist, but is not of
the type pattern, then a "wrong type" error will result. Other such functions for text,
points, logical, color and number also exist.

Call this function only within an event.

Lookup_Point
<array of 2 numbers> Lookup_Point (<text>);

This function returns the point value (an array of two numbers) of the attribute
named as the text parameter. If the attribute does not exist, then the simulation will
halt giving an "unknown attribute" error. To avoid this, authors should always test for
the existence of the attribute first, using the AttExists function. If the attribute
does exist, but is not of the type point, then a "wrong type" error will result. Other
such functions for text, number, logical, color and pattern also exist.

Call this function only within an event.

Lookup Text
<text> Lookup_Text (<text>);

This function returns the text value of the attribute named as the text parameter. If
the attribute does not exist, then the simulation will halt giving an "unknown attribute"
error. To avoid this, authors should always test for the existence of the attribute first,
using the AttExists function. If the attribute does exist, but is not of the type text,
then a "wrong type" error will result. Other such functions for number, point, logical,
color and pattern also exist.

Call this function only within an event.

Quitvivids
Quitvivids (<logical>);
The Quitvivids event statement will cause the iRides application to quit. If the
argument is true, a dialog box will pop up to confirm the quit. If the user chooses
“No", iRides continues. A false argument will simply quit without asking for
confirmation. This makes it possible for authors to decide whether quitting must be
confirmed for their application.

Set_Color
Set_Color (<text>, <color>);
The set_cColor event statement sets the value of the attribute specified in the first
argument to the value of the second argument. If the attribute does not exist or is
not of the type color, then a simulation error will occur. Authors should test for the

69

The iRides Simulation Language 3—Simulation Language Functions July 2004

existence of the attribute that is about to be set by using the attExists function.

For example,

if AttExists(format(".S.Reflectn%%" .S.CurNum, ".FillColor")
then Set_Color (format(".S.Reflectn%%" .S.CurNum,

" FillColoxr")) := .S.CurColor;

The effect of this example will be to assign the color value in .s.CurColor to some

attribute such as .S.Reflectn21.FillColor.

Set_Logical
Set_Logical (<text>, <logical>) ;
This event statement sets the value of the attribute specified in the first argument to
the value of the second argument. If the attribute does not exist or is not of the type
logical, then a simulation error will occur. Authors should test for the existence of the
attribute that is about to be set by using the AttExists function.

Set_Number
Set_Number (<text>, <number>) ;
This event statement will set the value of the attribute specified as the first argument
to the value of the second argument. Again, if the attribute does not exist or if the
attribute is of the wrong type, then a simulation error will occur. Other such functions
exist for the other types.

Set__Pattern
Set_Pattern (<text>, <pattern>) ;
The set_Pattern event statement sets the value of the attribute specified in the
first argument to the value of the second argument. If the attribute does not exist or
is not of the type pattern, then a simulation error will occur. Authors should test for
the existence of the attribute that is about to be set by using the AttExists
function.

Set_Point
Set_Point (<text>, <point>);
The set_Point event statement sets the value of the attribute specified in the first
argument to the value of the second argument. If the attribute does not exist or is
not of the type point, then a simulation error will occur. Authors should test for the
existence of the attribute that is about to be set by using the AttExists function.

Set_Text
Set_Text (<text>, <text>);
The set_Text event statement sets the value of the attribute specified in the first
argument to the value of the second argument. If the attribute does not exist or is
not of the type text, then a simulation error will occur. Authors should test for the
existence of the attribute that is about to be set by using the AttExists function.

70

The iRides Simulation Language 3—Simulation Language Functions July 2004

SetKUText
<logical> SetKUText (<text><text><text>)
The first argument of the setKuText function specifies the full name of an object
with an associated knowledge unit. The second argument specifies the name of a
topic for that knowledge unit. The third argument specifies the new topic text. The
function returns true if the object exists, and false if it does not. On success, it

will return true.
Call this function only within an event.

Older VIVIDS Functions Not Supported in iRides
The following functions were used in VIVIDS but are not supported in iRides.

GetBody

GetDelay

GetTest

SetDelay

SetField

SetName
DefineConfiguration
DeleteConfiguration
InstallConfiguration
NetworkConnect
Remote_Color
Remote_ Logical
Remote_Number
Remote_Pattern
Remote_Point
Remote_Text
TScriptLink
TScriptSend
VNetLink

VNetSend

71

The iRides Simulation Language July 2004

Extending the Simulation Language

This chapter is intended for experienced Java programmers who are interested in
extending the native function set of the iRides simulation language. It is possible to
write new functions that will be utilized automatically by the iRides simulation engine.
Programmers create these functions by creating a new Java class that is a subclass
of JRFunction. Two to four of the methods of JRFunction must be overridden in the
new function to make the new function behave appropriately when it is invoked in an
author's simulation rules.

The Java runtime environment supports reflection. This makes it possible for a Java
class to obtain the names of all its members. Classes (compiled objects) that
support reflection must implement a getName method that returns the name of the
object. Using reflection, the iRides simulation engine can find and make use of code
that was developed independently, perhaps even long after the engine was.

Our approach to making a constraint-based programming language extensible
requires that all functions and procedures in the language be derived from a class
that implements four special methods: getFormak(), secretTriggers(), stayDirty(), and
compute(). These behaviors are further explicated below.

When a developer wishes to extend the constraint programming language, he or she
must create a new class derived from the constraint language function base class.
This derived class must specify the behavior of the new function. It must also specify
the types of the parameters of the new constraint language function, by overriding
getFormat(). In addition, it may override one or both of the special methods
secretTriggers() and stayDirty(). The developer puts the new class file in the
directory btl/sim/user/, where it will be automatically found and utilized as required at
run time.

72

The iRides Simulation Language 4—FExtending the Simulation Language July 2004

Parsing Constraints with 'Native' Function Calls

During the process of parsing the data specifications for a constraint-based
interpretable application , the parser encounters function calls that were pre-defined.
Because these functions are written in a more efficient programming language than
the constraint language itself, which is interpreted, such native functions can run
much more quickly than can functions written in the interpreted language. Rather
than restricting user- developers to a set of pre-defined native functions, this system
permits authors to add their own. At parse time, the system carries out a set of
operations each time that it encounters a native function. See Figure 5.

FOR EACH FUNCTION
CALL ENCOUNTERED

RRESP. FUNCTTOR,
TIASS OBJECTROUND I
HASHTABLE?

1> SAME-NAMIY
USER-DEANED
CLASS?

>

YES

r l CHECK PARAMETERS

SUCCESSTULL
PARAMETERS
CHECK?

BUILD EXECUTABLE IROM
USER-DEINED FUNCTION

r I ADD SECRET TRIGGERS

| NEXT FUNCTION CALL l

Figure 5. Parsing Constraints with ‘Native' Function Calls

First it checks to see whether it already knows about the function, by looking it up in
a hash table of all the functions thus far utilized during this session. If the function is
not present, then it is found, using reflection, in a set of classes for defined
functions. All of these functions are objects that are derived from a base JRFunction
class. (Similarly procedures are all derived from a base JRProcStatement class.)
This class implements a number of utility methods and the four methods
getFormat(), secretTriggers(), stayDirty(), and compute(), which can be overridden
by the user- developer.

YES

HANDLE EXCEPTION

ADD FUNCTION CLASS OBJECT
TO HASH TABLE

The parameters of the user-defined function are then checked. This process is
illustrated in Figure 8. If the parameter check is successful, a function call object is
created for use in the executable constraint structure.

If the function has any secret triggers, then those triggers are added to the
parameter list of the function call. The effect of this will be to ensure that each such
secret trigger will have a dependents list that includes the constraint now being
parsed. One example of secret triggers is the graphical attributes of scale and

73

The iRides Simulation Language 4—Extending the Simulation Language July 2004

Location, in the case of a function called ConstrainToFillArea(Object, Point). (See
the discussion immediately following.)

A method for specifying the non-intrinsic triggers of user-defined constraint
language functions and procedures

In an efficiently implemented constraint language execution environment, only the
constraints that should be re-evaluated are re-evaluated during each execution
cycle. If any of the parameters of an invocation of a function in a particular relation
change value, then the relation must be re-evaluated. However, there are some
functions that need to be re-evaluated when other values change.

Consider the case of a function called ConstrainToFillObject, Point). This is an
iRides function that takes two parameters, a graphical object and an array of two
numbers (a point). It returns an array of two numbers that represent the point in the

- object that is closest to the point specified by the point parameter. (If the point
parameter is within the fill area of the graphic, then the same point will be returned. If
the point is outside the graphic, then the returned value will be the point on the edge
of the graphic that is closest to the point parameter). Naturally, any constraint that
invokes ConstrainToFill should be evaluated whenever a parameter value, such as
the specified point, changes. However, there are other conditions under which such
constraints should be evaluated. If a graphical attribute of the object specified by the
first parameter, such as its location or its scale or its rotation, changes, then the
relation should be reevaluated.

Users who wish to introduce a new 'native' function or a new 'native' procedure to a
constraint language must specify the non-intrinsic (non-parametric or secref) triggers
of the new function. Changes in the values of external attributes, which are not in the
function's parameter list, must trigger evaluation of constraints that employ the
function. Users override the secretTriggers function of their new descendant of the
constraint language function base class in order to specify the external triggering
attributes.

The method for adding secret triggers to the parameter list of a function call,
referenced in Figure 5, is illustrated in Figure 6.

74

The iRides Simulation Language 4—Extending the Simulation Language July 2004

PARAMETER
LIST EXISTS?

CREATE PARAMETER LIST

YES

A

FOR EACH SECRET TRIGGER

NAMED TRIGGER

ATTRIBUTE EXITS? REATE NAMED ATTRIBUTI

YES

3

ADD TO
PARAMETER LIST

|

NEXT TRIGGER

END

Figure 6. Adding Secret Triggers to the Function Call's Parameter List

If a parameter list does not exist, then one is created, so that the secret triggers can
be added to it. The user's secretTriggers() method for this particular function class
(which must be derived from a base class with a default secretTriggers) is then
called. For each secret trigger in the array of strings that is returned, the method
checks for an attribute of that name. If one does not exist, it creates the attribute and
assigns it a default value. The set of attribute references for all the secret triggers is
then appended to the parameter list for this function call.

Specifying the number and data types of the parameters of a user-defined
constraint language's functions and procedures

Users who wish to introduce a new 'native' function or a new 'native’ procedure to a
constraint language must specify the type and number of the parameters to the new
function. This specification takes a very simple form. The getFormat() function is
overridden to return a string that consists of a sequence of characters from a
restricted set of characters. See Figure 7.

75

The iRides Simulation Language 4—Extending the Simulation Language July 2004

The Structure of Format Strings IM IX | T] TI Tl I T|
[

Minumum # of paia.me ers
Maximum # of pafameters
Type of 1lst Pafyamefjer
Type of 2nd Pagameter
Type of 3rd Parameter

Type of last Parameter

Examples

Format String: n Exactly 2 parameters, 1 string & 1 number

Legal Params: (“engaged”, 1)

Format String:l 1 | 1 I N I N I 1 I 1 | 3 |Either one string or an array of 3 numbers

Legal Params: (“Dodger Blue™)
([0.0235, 0.38, 1.0])

Format String: Any number of any parameters

Legal Params: (“Hi Mom!”)
([0.0235, 0.38, 1.0D)
(0, 1, “pizza”, true, 17)
0

Figure 7. The Structure of User-Specified Parameter Format Strings

The first two characters are digits which specify the minimum number of parameters
that must be present and the maximum number of parameters that are allowed. The
symbol "*" in either of these two positions in the sequence of characters specifies
"any number of parameters". The remaining characters in the string returned by
getFormat() specify the types of the parameters. Each character in this part of the
returned string (in the third to nth position) uniquely specifies the type of the
parameter at that position in the list. For example, in iRides, the type specifications
are:

number

string

logical

object

indefinite length array of numbers
indefinite length array of strings

indefinite length array of logicals
indefinite length array of objects

array of 3 numbers [any of digits 2..9 OK]

any type

* W QMMM =20 —u >

Iif a function can accept several different parameter sets, the parameter
specifications must be separated by commas. For example, in the iRides program
that uses this technique, the function MakeColor can have a parameter list that

76

The iRides Simulation Language 4—Extending the Simulation Language July 2004

consists of either an array of three numbers (specifying the values of the red, green,
and blue components of the color) or a string that names a predefined color. E.g.,
makeColor ("Dodger Blue")
makeColor ([0.0235, 0.38, 1.0])
These two options can be specified by defining makeColor's getFormat() function as

follows:
public String getFormat () { return "1lls,113"; }

The designations n, N, s, S, etc. correspond to the data types of the iRides
constraint language. Here are some examples of particular definitions for
getFormat() in different user-defined functions:

"4dnslo": 4 parms: lst=number, 2nd=string, 3rd=logical, 4th=object
mhkAky Any number of any type (wild card)

n2kggkng At least 2 strings and any number other

"d4*gn*": 4 parms: 1lst and 4th anytype, 2nd string 3rd num

"11s,11n": 1 string or 1 number ("or" is implicit)
“3323N": 3 parms: vector([2] .number, wvector[3].number,

vector[*] .number
"33230": 3 parms: vector[2] .objref, vector[3)].objref,

vector[*] .objref

More formally, the format of the getFormat specifier string (the one parameter to

getFormat) is MXTTT..., where
M is the minimum number of parameters that the function requires

X must be in one of [* | 0..9]
X is the maximum number of parameters that the function can take

Y must be in one of [* | 0..9]
T is a type specification
in iRides, T must be one of [n, s, 1, o, N, §, L, 0, *, 2..9]

How parameters are checked in user-defined constraint functions

A utility object, the parameter checker (a class called ParmChecker in iRides)
implements a function that is used to check particular usages of the programmer's
own defined constraint language functions. In iRides, this function is called
ParmsOK. This function compares the parameters of each usage with the parameter
specification provided by getFormat(). See Figure 8.

First the secret trigger references of a user-defined function call are checked. If
there are bad references, an error message is logged for the author of the constraint
environment. Then a copy of the parameter list is created that does not have the
secret triggers. The getFormal() function is used to get the user's defined format
string, which is used to judge the well-formedness of the parameter list of the
function call. This format string may have more than one legal set of parameters
specified for the function (comma-separated, as in the second example in Figure 7).
For each such parameter specification, the method checks that the number of
parameters in the actual parameter list is less than or equal to the minimum number
specified by the format string, that the parameter types of the parameter list's actual
parameters match the types specified, and that the list does not have more than the
maximum number of legal parameters for this specification. If any of these tests is
failed, the method moves on to the next specification in the format string and tries
again. As soon as a legal match is found, the parameter checker returns success. If
all the specifications of the format string are tried without a match, then the Check

77

The iRides Simulation Language 4—Extending the Simulation Language July 2004

Parameters method returns a failure code. In this case, the parameter list supplied in
the function call is not legal.

RETURN ERROR MESSAGE

STRIP SECRET TRIGGERS FROM
CHECK COPY OF PARAMETER LIST

!

FOR EACH PARAMIETER
SPECIFICATION IN FORMAT STRING

NEXT PARAMETER
SPECIFICATION

END OF FORMAT
STRING?

NUMBER OF
PARAMETERS >=
MIN?

NUMBER OF
PARAMETERS <=
MAX?

Figure 8. Check Parameters Based on User Specifications

Specifying forced constraint execution for user-defined functions and
procedures

In some cases, it may be necessary to define functions that should be updated on
every use, whether or not their parameters have changed. An optimized constraint
execution system caches previous results with a constraint. If the values referenced
in the constraint have not changed, the old cached result can be used, rather than
undergoing the computational expense of executing the constraint again. Some
functions, however, should be run each time that a constraint is used. A method is
needed to specify for a function that constraints with that function should be
evaluated on each use. In iRides, this is handled by an overriden base class
function, stayDirty().

Most user-defined functions do not need to override the base class definition of
stayDirty(), which is defined as :

public boolean stayDirty() { return false; } //override for
// random(), etc.

Some constraint language systems do not permit functions that stay dirty to be used
in constraints, but rather restrict the use of such functions to procedure contexts
(events in the terminology of the iRides simulation language system). Programming
languages that are both constraint languages and procedural languages, such as

78

The iRides Simulation Language 4—Fxtending the Simulation Language July 2004

the simulation languages in RIDES and iRides, may adopt either approach. In

RIDES, functions that stay dirty are permitted in constraints. In iRides, such

functions can only be used in events. In RIDES, a constraint can have a form like
twitch = random(range) + base

This rule will be fired on every simulation cycle; the value twitch will be continuously

reset to various values between base and base + range. In iRides, this constraint

would be detected at parse time and marked as illegal.

79

The iRides Simulation Language

abs, 26

acos, 26

AddToArray, 52
AltlsDown, 16

and, 16

arctan, 26

arctan2, 26

asin, 27

AttExists, deprecated, 70

B
blue, 25

case, 49, 52

concat, 34
ConstrainMouseToEdge, 42
ConstrainMouseToFill, 42
ConstrainToEdge, 42
ConstrainToFill, 42

cos, 27

CtrlisDown, 16

Date, 34

Day, 27

Defined, 16
DeleteAtt, 17
DeleteObject, 17
DisplaySize, 43
DoEvent, 53
DownCiick, 17
DragAndClick, 53

exp, 27

Fadeln, 53
FadeOut, 54
fclose, 54, 67
Flare, 54
fopen, 54, 67
format, 35

July 2004

Functions Index

80

FormatNumber, 35

G

GetField, 37

GetFullName, 37

GetKey, 37

GetKUText, deprecated, 70
GetName, 37
GetNthRecord, 38, 67
GetRule, 38

GetURL, 38

green, 25

Hour, 27
HSVioRGB, 40

if...then {event), 55
if...then...else (event), 55
if...then...else (universal), 47
IsNullObject, 17

IsNumber, 18

LCase, 38

Len, 27

Length, 28

log, 28

log10, 28

Lookup_Color, deprecated, 70
Lookup_Logical, deprecated, 71
Lookup_Number, deprecated, 71
Lookup_Pattern, deprecated, 71
Lookup_Point, deprecated, 71
Lookup_Text, deprecated, 72

MakeClone, 41
MakeColor, 41
MakePattern, 45
MakePoint, 43
MakeTemplate, 18
max, 28
MetalsDown, 18
MiddleDownin, 18
min, 28

The iRides Simulation Language

Minute, 28

mod, 28

Month, 29
MouseDownin, 18
Mouseln, 19
Mouselsin, 38
MousePosition, 43, 44
MouseUpln, 19
MoveAndClick, 55
MoveBwd, 56
MoveFwd, 56
MoveToBack, 56
MoveToFront, 56

NewAttribute, 19
NewColorAtt, 20
NewLogicalAtt, 20
NewNumAtt, 20
NewPatternAtt, 20
NewPointAtt, 20
NewTextAtt, 20
NewVectorAtt, 20
not, 21

Now, 29
NthAttribute, 38
NthObject, 39
NumAttributes, 30
NumFields, 30
NumObjects, 30
NumRecords, 30, 68

0]
ObjectExists, 21
odd, 21
or, 21
ord, 30
P

ParentPath, 39
PercentToPoint, 44
Play_MPEG, 56
Playlnstruction, 56
PlaySound, 57
PointToPercent, 31
PopupCheckBox, 57
PopupDialog, 57
PopupKeypad, 58
PopupLogin, 58
PopupMenuEntry, 59

81

Functions Index

PopupNumericEntry, 59
PopupRadio, 59
PopupSlider, 60
PopupTextEntry, 60
PostURL, 21

pow, 31

PressClose, 61
PressContinue, 61
PressDontKnow, 61
PressStop, 61

Print, 39, 61
Q
Quit, 61
QuitVivids, deprecated, 72
R
random, 31

RandSeed, 62
readline, 40, 68

red, 25

Refresh, 62
RemoveFromArray, 62
ResetClock, 62, 63
RGBtoHSV, 40
RightDownin, 22
RingBell, 63

round, 31

SavefFile, 22

scormfinish, 69
scormgetvalue, 69
scorminitialize, 69
scormsetvalue, 69

Search, 32

Second, 32

Set_Array, 63

Set_AttRef, 63

Set_Color, deprecated, 72
Set_Logical, deprecated, 72
Set_Number, deprecated, 73
Set_ObjectRef, 63
Set_Pattern, deprecated, 73
Set_Point, deprecated, 73
Set_Text, deprecated, 73
Set_Value, 64

SetBody, 22

SetCursor, 64

SetKUText, deprecated, 73

July 2004

The iRides Simulation Language

SetNthRecord, 64, 68
SetRule, 22
SetTemplateRule, 22
SetTest, 23
ShiftlsDown, 23
ShowURL, 65

sin, 32
SoundlsPlaying, 23
sqrt, 32

StartTimer, 65
StopSound, 65
StopTimer, 32
SubText, 40
system_call, 65

tan, 33

TextEq, 23
ToNumber, 33
TrackMouseAngle, 33
Transform, 44
TransformStr, 45
trunc, 33
TypeColor, 24
Typelogical, 24
TypeNum, 24
TypePattern, 24
TypePoint, 24
TypeText, 24

UCase, 40
UpClick, 24

'

VideolsPlaying, 24
VIVIDS functions not supported in
iRides, 74

Functions Index

82

July 2004

w

WatchMouse, 65
Weekday, 34
while, 66

with, 48
writeline, 66, 69

X, 25

y, 25
Year, 34

Non-Alphabetical

-, 26

- (unary), 26
1,16

I=, 15

*, 26

/, 26
51
/1, 50
1%, 51
=, 50
[blue], 25
[green], 25
[red], 25
[x], 25
[yl, 25
+,25

<, 15

<=, 16
<>, 15

=, 15

>, 15

>=, 16

